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Highlights: 14 
 15 

 Brain networks impacted by back-pain are analyzed from random matrix theory 16 
perspective. 17 
 18 

 The study demonstrates the effectiveness of random matrix theory in differentiating 19 
between resting state and two distinct task states within the same patient.  20 
 21 

 Random matrix theory is effective in measuring systematic changes occurring in 22 
functional connectivity.  23 
 24 

 This study offers new insights on how acute and chronic pain are processed in the 25 
brain at a network level.  26 

 27 
Abstract 28 
 29 
We use randomness as a measure to assess the impact of evoked pain on brain networks. 30 
Randomness is defined here as the intrinsic correlations that exist between different brain regions 31 
when the brain is in a task-free state. We use fMRI data of three brain states in a set of back pain 32 
patients monitored over a period of 6 months.  We find that randomness in the task-free state 33 
closely follows the predictions of Gaussian orthogonal ensemble of random matrices. However, 34 
the randomness decreases when the brain is engaged in attending to painful inputs in patients 35 
suffering with early stages of back pain. A persistence of this pattern is observed in the patients 36 
that develop chronic back pain, while the patients who recover from pain after six months, the 37 
randomness no longer varies with the pain task. The study demonstrates the effectiveness of 38 
random matrix theory in differentiating between resting state and two distinct task states within 39 
the same patient. Further, it demonstrates that random matrix theory is effective in measuring 40 
systematic changes occurring in functional connectivity and offers new insights on how acute and 41 
chronic pain are processed in the brain at a network level.  42 
 43 
Key Words: Random Matrix Theory, Back-pain, Functional MRI, Brain Networks 44 
 45 
 46 
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1. Introduction 47 
 48 
Chronic pain represents a major clinical, social, and economic problem for societies worldwide. 49 
The principal complaint is of unremitting physical pain that does not abate with standard analgesics 50 
[1–3]. The experience of pain is quite different across the population and persists for different 51 
durations between individuals. Pain is in essence a threat signal that we localize to a part of the 52 
body in the form of an unpleasant sensation. This sensation accompanies a strong negative emotion 53 
that works as an aversive signal which is necessary for learning proper avoidance behaviors. In 54 
some people, this signal becomes accentuated and tends to persist for long periods of times 55 
extending over months to years. These individuals very often show no signs of tissue damage or 56 
underlying pathology in the site where they are feeling pain. Brain imaging studies suggest that 57 
chronic pain alters the nervous system so that the brain perceives persistent pain due to maladaptive 58 
processes in the brain. An expedient approach for understanding these maladaptive processes is to 59 
observe how back pain transitions to a chronic form.  60 
 61 
Thus, we know that in some patients, persistent back pain is acute and persists for a few weeks to 62 
be classified as subacute back pain (or SBP). This early stage of persistent back pain remits in 63 
some individuals, while for others, it persists for months to years and this enduring back pain is 64 
classified as chronic (Chronic Back Pain or CBP). Brain responses to back pain have been reported 65 
to change over time as people with subacute back pain develop chronic back pain. While any initial 66 
instance of self-report of spontaneous occurrence of back pain activates brain regions such as the 67 
insula and the anterior cingulate cortex that customarily respond to acutely evoked pain, over time, 68 
these instances correspond with activations in regions that process fear (amygdala) and self-69 
referential thinking (medial prefrontal cortex). In a recent longitudinal study [3], it has been clearly 70 
demonstrated (with pictorial representations) that persistence of back pain alters brain responses. 71 
A large cohort of people with CBP, it was established that brain connectivity is also altered by 72 
persistent pain, where regions with the highest connectivity (hubs) show a deviation in their pattern 73 
across the brain relative to healthy controls and shows increases in modularity in sensory areas of 74 
the brain [4].  75 
 76 
The reasons and neural mechanisms due to which back pain transitions from subacute to chronic 77 
are still ambiguous, and the pursuit to find neurological reasons for this transition is central to 78 
contemporary pain research. In recent years, there have been successful attempts in relating CBP 79 
to specific brain activity [5] whereby neuroimaging method of functional Magnetic Resonance 80 
Imaging (fMRI) is used to study the correlations between CBP and brain activity. fMRI makes use 81 
of the fact that neuronal activity is partly coupled with increases in blood flow in the observed 82 
parts of the brain and it images these changes as a haemodynamic response to brain activity. This 83 
particular form of fMRI is also referred to as blood-oxygenation-level-dependent (BOLD) fMRI 84 
and it offers high spatial resolution. A useful adaptation of this approach is to measure how slow 85 
temporal fluctuations (0.01-0.15 HZ) are between different brain regions and this statistical 86 
dependency is referred to, more generally, as functional connectivity. Identification of functional 87 
networks from fMRI data has gained importance in the recent years as it provides critical 88 
information about correlations between different regions of brain, and how these correlations are 89 
affected in various conditions [6,7]. The network properties that emerge from large-scale 90 
correlations have been shown to be altered in neuropsychiatric and chronic conditions such as 91 
CBP[5,8–12]. It is still a challenge to understand the dynamic transition of brain between different 92 
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states as a result of back-pain. It is because brain is a fairly complex system whereby neurons are 93 
constantly interacting with each other often resulting in higher brain functions [13,14] and in the 94 
formation of functional networks, even in the absence of any stimuli. Though large-scale 95 
functional connectivity is often studied using clustering techniques or principles of graph 96 
theory[15], there is a need to apply the concepts and methodologies developed in the context of 97 
the theory of random matrices for observing systematic transitions in brain states.  98 
 99 
Random Matrix Theory (RMT) was originally developed in the nuclear physics applications, 100 
where nuclei can have many possible states and energy levels and, and their interactions are too 101 
complex to be described accurately. In such a scenario, one settles for a model that captures the 102 
statistical properties of the energy spectrum. RMT finds extensive applications in the statistical 103 
studies of various complex systems such as quantum chaotic systems, complex nuclei, atoms, 104 
molecules, disordered mesoscopic systems [16–24], atmosphere [25], financial applications [26], 105 
complex networks [27], societal networks [28], network forming systems [29,30], amorphous 106 
clusters [31–34], biological networks [35], protein networks [36,37], and cancer networks [38]  107 
etc. In recent years, RMT has also been applied towards brain network studies in studying universal 108 
behavior of brain functional connectivity and has been effective in detecting the differences in 109 
resting state and visual stimulation state[39,40].  Recently, attempts using RMT have also been 110 
made in brain functional network studies on attention deficit hyperactivity disorder (ADHD) [41].  111 
 112 
RMT makes use of the fact that true information of the system is contained in the eigenvalues of 113 
a correlation matrix. Specifically, for brain networks, the eigenvalues represent the level of 114 
functional connectivity between different regions of interest (ROIs) in brain, and larger 115 
eigenvalues contain information about significant correlations (or strong connectivity), and 116 
therefore, about processes in brain. Recent studies have shown that ROIs in brain are correlated. 117 
Furthermore, these correlations closely follow the predictions of Gaussian Orthogonal Ensemble 118 
(GOE) of random matrices when the brain is in a state of rest (fully conscious). The clearest 119 
indication so far has come from EEG data[39], which further attributes the observed deviation 120 
from GOE predictions to visual stimulation; that is, true information. Other recent studies[40,41] 121 
also point to similar information, however, the overall findings are unclear. We hereby propose a 122 
hypothesis where, we refer to these observed correlations as random correlations, or in general, 123 
randomness, that exists at any given instant in brain network. When the brain is engaged in a task, 124 
this randomness would be expected to decrease, as brain regions would be connected in a coherent 125 
fashion relative to a task-free or resting state. These random correlations reach their normal levels 126 
at resting state. Thus, RMT may offer a principled approach for measuring systematic changes in 127 
randomness that occur in brain networks during perception and cognition.  128 
 129 
Here we investigate whether the brain demonstrates a greater deviation from GOE predictions 130 
when it is engaged in detecting threats or experiencing discomfort from pain relative to perception 131 
of innocuous stimuli. Since the ability to properly detect and perceive pain is fundamental for 132 
survival, attending to pain can be expected to add systematic changes in brain connectivity and 133 
thus reduce random correlations in brain networks. On the other hand, maladaptive processing of 134 
pain inputs during a chronic stage of back pain may show a different behavior, relative to the SBP 135 
state. The ability to distinguish these two states using an integrative approach such as RMT could 136 
be useful for improving chronic pain diagnosis and prognosis and also for understanding the 137 
abnormalities in brain properties that contribute to CBP. 138 
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 139 
2. Materials and methods 140 

 141 
In the following sub-sections, we describe the methodology and the workflow that we have 142 
followed for the present work in a chronological order: 143 
 144 

2.1 Subject Classification 145 
 146 
For the present work, we use fMRI data available on the open access data sharing platform for 147 
brain imaging studies of human pain (www.openpain.org). The complete dataset is a part of 5-year 148 
longitudinal study of transition to chronic back pain in which 120 patients were recruited initially.  149 
At each visit, fMRI scans and McGill Pain Questionnaire Visual Analogue Scale (MPQVAS) 150 
measures were recorded for all the patients.  151 
 152 
For the present RMT-based study, we use fMRI scans obtained from two visits namely, an initial 153 
visit where all patients report back-pain, and a follow-up visit six months after the initial visit, 154 
whereby some patients report remission of back-pain and others report persistence of back-pain. 155 
As a result, at the follow-up visit, based on the difference of MPQVAS measures for the two visits, 156 
the patients are classified in two groups. For group of patients whose MPQVAS values decrease 157 
by 30% or more than the corresponding value at initial visit, we classify them as “SBP recovering 158 
(or simply, recovering)” group, and the rest as “SBP persistent (or simply, persistent)” group. A 159 
pictorial representation of this classification is illustrated in Figure 1.  160 
  161 

Fig. 1: Recovering SBP group in contrast to Persistent SBP group based on MPQVAS ratings. 162 
Each of the points denotes the mean value for the group. The error bars represent standard error of 163 
mean.   164 
 165 
 166 
 167 

2.2 fMRI Tasks 168 
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 169 
All the participants were trained to perform two tasks using finger-span device with which they 170 
provided continuous pain ratings[3,5]. This device consisted of a potentiometer in which voltage 171 
was digitized. During the brain imaging sessions, the device was synchronized and time-stamped 172 
with fMRI image acquisition and connected to a computer providing visual feedback of the pain 173 
ratings [42]. We use data acquired from three different states: 174 
 175 
a) Resting State (RS): A state of rest in which the participants are not thinking about any one 176 
thing in particular. 177 

 178 
b) Spontaneous Pain (SP): A state of focusing and rating spontaneous changes in back pain.  179 
Here, the individuals saw a bar that increased or decreased in height on the y-axis scale (0-100). 180 
By changing the distance between the thumb and index finger, they could increase or decrease the 181 
height based on the intensity of pain they felt in their back on the scale. These measurements were 182 
recorded in real time and individuals continuously rated their back pain during the length of the 183 
entire brain scan. 184 
 185 
c) Standard Visual (SV): A control state in which they are rating changes in length of a visual 186 
bar. Here, participants no longer rated their pain, instead they increased or decreased the distance 187 
between their fingers so that it matched the changes in the height of the bar on the scales y-axis. 188 
Thus, the SV condition represents a control condition that was unrelated to pain and only represents 189 
a visual-motor control task.  190 
 191 

2.3 MRI data acquisition  192 
 193 
The data for all participants and visits was collected by a 3T Siemens scanner. At first, MPRAGE 194 
type T1 anatomical brain images were acquired followed by fMRI scans on the same day with the 195 
following parameter details [3]: EPI sequence: voxel size 1 X 1 x1 MM, Repetition time=2500MS; 196 
Echo Time=3.36MS; Flip angle = 9 degrees; In-Plane matrix resolution 256 X 256;  slices 160, 197 
filed of view, 256mm. Functional MRI scans were acquired on the same day as the T1 scan and 198 
McGill Pain Questionnaire Visual Analogue Scale (MPQVAS) measures: multi-slice T2*-199 
weighted EPI images with repetition time=2.5s, echo time=30ms, flip angle =90 degree, number 200 
of volumes =244, slice thickness =3mm, in-plane resolution =64 x 64. 201 
 202 

2.4 Pre-processing of fMRI data 203 
 204 
We use Freesurfer, FMRIB Software Library (FSL) v5.0, and Analysis of Functional Neuro-205 
Images (AFNI) software to preprocess the data similar to procedures adapted for the 1000 206 
Functional Connectomes project[43]. Data were slice time corrected, motion corrected, temporally 207 
band-pass filtered, and then further filtered to remove linear and quadratic trends using AFNI. 208 
Complete details of the preprocessing procedure are given in[44]. The registration was performed 209 
using FMRIB's Linear and non LINEAR Image Registration Tools for transformations from native 210 
functional and structural space to the Montreal Neurological Institute MNI152 template with 2 x 211 
2 x 2 resolution, with further details given in[44]. 212 
 213 

2.5 Anatomical parcellation and construction of correlation matrix 214 
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 215 
The brain is anatomically parcellated by an optimization of the Harvard/Oxford parcellation 216 
scheme (OHOPS)[45]. In this scheme, the anatomical partitioning of cingulate, medial and lateral 217 
prefrontal cortices of Harvard Oxford Atlas was increased and in addition, anatomical partitioning 218 
of insular label was also performed, and the single Region of Interest (ROI) spanning the entire 219 
insula in Harvard Oxford Atlas was further subdivided based on a previous scheme[46]. The 220 
complete OHOPS consisted of a total of 131 regions[45]. Each ROI was designated as a node and 221 
the BOLD time series were extracted from each node and averaged to generate 131 time series for 222 
each subject. Following this, the whole brain networks were constructed, and network measures 223 
were assessed using the Brain Connectivity Toolbox, with formulae used for calculating network 224 
measures described in[47]. The brain networks are usually assortative in nature[48,49].   225 
 226 
For each patient, the BOLD time series in each region was correlated with every other region to 227 
create a 131 x 131 symmetric correlation matrix based on Pearson's correlation coefficients given 228 
by:  229 
 230 

𝑐𝑜𝑟𝑟ሺ𝑋, 𝑌ሻ ൌ
𝑐𝑜𝑣ሺ𝑋, 𝑌ሻ

𝜎௑𝜎௒
 231 

 232 
or, which can also be written as: 233 
 234 

𝑐𝑜𝑟𝑟ሺ𝑋, 𝑌ሻ ൌ
∑ ሺ𝑥௜ െ 𝑥௡

௜ୀଵ ሻሺ𝑦௜ െ 𝑦ሻ

ሺ𝑛 െ 1ሻට∑ 𝑥௜
ଶ െ 𝑛𝑥௡

௜ୀଵ
𝑛 െ 1

ට∑ 𝑦௜
ଶ െ 𝑛𝑦௡

௜ୀଵ
𝑛 െ 1

 235 

 236 
Here, X and Y are two distinct time series, each made up of n time points, xi and yi respectively. 237 
For the present case, there are 240 time points (n = 240) for each time series. 𝑥̅ and 𝑦ത are the 238 
respective means for two time series (x and y). By definition, the diagonal elements of the matrix 239 
are 1, as it represents self-correlation and the off-diagonal elements result in a symmetric matrix. 240 
Such correlation matrices are not only symmetric, but they are also positive semi-definite[50,51], 241 
with all eigenvalues being non-negative. This correlation matrix is then diagonalized and 242 
eigenvalues () are obtained. In the present case, there are 131 eigenvalues, few eigenvalues are 243 
zeros, and remaining have positive values. It must be remembered that not all ROIs are a part of 244 
active brain network at a given time and hence, very small eigenvalues are usually ignored, and 245 
the related correlations are unimportant from functional connectivity perspective. In the present 246 
cases, usually the first 40 (around 30%) eigenvalues are extremely small from computational 247 
perspective. Hence, we leave them out from the subsequent analysis. 248 
 249 

2.6 Unfolding of data 250 
 251 
Fluctuations around the eigenvalue spectra are studied using standard methods of RMT. The first 252 
step is to unfold the data, meaning, the eigenvalues are arranged in an increasing (cumulative) 253 
order and are then mapped using an analytical function in such a way that the average spacing 254 
between two successive eigenvalues is unity. This ensures all the eigenvalues are on same footing. 255 
The analytical fitting function used for unfolding need not be unique and, is generally different for 256 
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different systems[30–34]. For this study, the eigenvalue spectra of all the correlation matrices 257 
generated is approximated extremely well by a function of the form  258 
 259 

ሺ𝑎 െ 𝑏 ∗ 𝑒ି௖ఒ
భ

೏ൗ
ሻ 260 

 261 
where a, b, c, and d, are best-fit parameters and  is the eigenvalue. Figure 2 shows a plot of the 262 
cumulative eigenvalue density along with the analytical fitting function. We leave out a small 263 
portion of eigenvalues at the upper end (3 or 4 eigenvalues) in order to achieve the best fit, 264 
something which has been a standard practice in other works [30–34]. We deal with unfolded 265 
eigenvalues from this point onwards. 266 
 267 

 268 
Fig. 2: Eigenvalue number vs eigenvalue () for a typical spectrum. Filled circles (black): Data. 269 
Continuous line (red): The best-fit using the functional form described in text. 270 
 271 

3. RESULTS 272 
 273 
We report the spectral statistics fluctuation properties of the eigenvalue spectra in the three brain 274 
states in individuals who were suffering with SBP (back pain for < 3 months). We also track what 275 
these properties looked like after 6 months in the group of individuals with SBP with persisting 276 
back pain[3,5,10,52]. Patients had all been pain free for one year prior to their subacute pain 277 
episode and had no history of any mental illness including depression. The individual details of 278 
patients are also available online on the data sharing platform. It must also be stated that none of 279 
the data from available subjects was excluded from the analysis. 280 
 281 
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3.1 INITIAL VISIT  282 
 283 
For the initial visit, where all patients report back-pain, 68 SP and 62 SV scans are available. In 284 
addition, there are 27 RS scans available. Analysis of randomly picked individual eigenvalue 285 
spectra indicate that brain-states have fluctuation properties associated with the Gaussian 286 
orthogonal ensemble (GOE) of random matrices. To improve statistics, we combine information 287 
from all unfolded data.  Figure 3a shows the normalized nearest-neighbor spacing distribution 288 
(NNSD) [p(s)] for RS, SP, and SV scans for the initial visit. Here, s is the eigenvalue spacing. 289 
Superimposed is the GOE result, which is also approximated by Wigner's surmise as: 290 
 291 

𝑝ሺ𝑠ሻ ൌ ቀ
𝜋𝑠
2

ቁ ∗ 𝑒ିగ௦మ/ସ 292 

 293 
For all the cases, we find a good agreement with GOE. For RS scans, this is not really surprising. 294 
Here, the patients have been directed to remain awake and not to think on any one thing in 295 
particular. In such a scenario, we would expect maximum randomness, hence NNSD would agree 296 
with GOE. The agreement of SP and SV scans with GOE is however, a more interesting case. In 297 
SP scans, as the patients are focusing on their back-pain and simultaneously reporting the pain 298 
rating through the finger device, a lot of brain regions are expected to be involved in this task. As 299 
a result, if there were to be a deviation from the GOE, we would expect it to be in SP scans. 300 
However, we do not see any deviation of NNSD from the GOE results. Lastly, SV being a visual 301 
task, is an intermediate of RS and SP states. Here, patients are following a displayed visual while 302 
performing the finger-spanning task without specifically focusing on the back-pain, and once 303 
again, we find an excellent fit of NNSD with the GOE. A single-valued indicator that follows the 304 
p(s) function is the variance of nearest-neighbor spacing. We find this number between 0.297 and 305 
0.320 for all the cases, which is quite close to 0.286, the number for GOE[31–33]. This agreement 306 
could be explained due to the fact that NNSD captures the correlations that exists between 307 
successive eigenvalues and does not have information about the long-range correlations. Short-308 
ranged correlations, especially between the nearest-neighbors are quite strong, and hence not 309 
altered substantially by both, visual (SV) and pain-rating (SP) tasks. This result is also consistent 310 
to other brain-network studies[39–41,49] and hence, further strengthens the belief that there exists 311 
strong, stimuli-resistant random correlations between nearest-neighbors in the brain network.  312 
 313 
Next, we take a look at the long-range (or higher order) random correlations. For this, we measure 314 
2(r), the variance of the number of levels n(r) within an interval of length r. The theoretical result 315 
for GOE is: 316 

Σଶሺ𝑟ሻ ൌ  
2

𝜋ଶ ቆ𝑙𝑛ሺ2𝜋𝑟ሻ ൅ 1.5772 െ
𝜋ଶ

8
ቇ 317 

 318 
The number variance is quite sensitive to changes, and is extremely sensitive to small systematic 319 
errors in the approximation to the analytical function used during unfolding[31,32]. Contribution 320 
of any such error to 2(r) grows as r2, whereas the GOE prediction for 2(r) grows as ln(r)[34]. In 321 
Figure 3b, we plot 2(r) for RS, SP, and SV scans along with GOE and Poisson [2(r) = r] 322 
distributions for the initial visit.  We observe that RS agrees with the GOE prediction over greatest 323 
domain, whereas we do see deviations for SV and SP scans with SP scans showing maximum 324 
deviation. This deviation is attributed to the relative tasks the subjects are performing in each case, 325 
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with the pain-rating task showing maximum deviation.  While it is on the expected lines to observe 326 
the variance agreement for RS scans to the GOE, it further demonstrates the efficacy of the RMT 327 
of capturing strong random long-ranged correlations when the brain is in a state of rest. We see a 328 
clear deviation from GOE for SP scans, whereby the patients are performing a pain-rating task. As 329 
stated before, a lot of brain regions are expected to participate in this task and, as a result, we see 330 
a clear decrease in randomness for SP scans. SV scans, however, present an interesting picture. 331 
We observe SV scans to show a good agreement with GOE for a greater range than SP scans, 332 
whereby the agreement matches with RS scans. While we do observe deviations from GOE 333 
eventually, the deviations are always less than SP deviations. This could be explained due to the 334 
nature of the task performed for SV scans. As the patients are not focusing on back-pain, the task 335 
involves only visual cortex to take part. In other words, compared to SP, this is an easier task to 336 
perform and, the difference between SV state and RS is quite subtle. As a result, fewer brain 337 
regions are expected to participate here. This inference is also consistent with the earlier results, 338 
whereby it is shown that salient percepts like pain engage more brain regions than visual 339 
stimulation[53–55]. This observed difference between the SP and SV scans is also the impact that 340 
SBP has on the brain networks. Additionally, also important here is the fact that RMT is able to 341 
capture the differences between two distinct task states.  342 
 343 

3.2 FOLLOW-UP VISIT 344 
 345 
At follow-up visit, which was approximately 6 months after the initial visit, the patients were made 346 
to repeat the same tasks (RS, SP and SV) and the corresponding scans were recorded. At this 347 
follow-up visit, while some patients recovered from persistent back-pain as a result of spontaneous 348 
remission of the condition (SBP recovering group), others experienced a persistence in their back-349 
pain, and they represent the group who have developed chronic back-pain (persistent group). To 350 
define SBP persistent group, we separate participants with pain persisting for 6 months from those 351 
that recovered (SBP recovering) based on self-report of pain ratings observed using McGill Pain 352 
Questionnaire Visual Analogue Scale (MPQVAS). We compare the MPQVAS values at initial 353 
and follow-up visits. If the pain rating value of a particular subject decreases by 30% or more, the 354 
subject is classified as ``Recovering'', else, it is classified as ``Persistent'' (See Figure 1).  Based 355 
on this classification, we have 18 RS, 17 SP, and 23 SV scans for Persistent group and 18 RS, 19 356 
SP, and 17 SV scans for Recovering group.  357 
 358 
Figure 4 shows NNSD for Persistent and Recovering groups. In both the plots, we observe the 359 
same trend for NNSD as it was at the initial visit. In both the plots, all the scans show an agreement 360 
with GOE predictions; an indicator of strong nearest-neighbor random correlations. The tasks at 361 
the follow-up visit are exactly same as the initial visit’s tasks. As a result, we can state with a 362 
greater certainty that the NNSD captures short-ranged correlations effectively, and the randomness 363 
is undeterred by the pain stimuli.  364 
 365 
We now take a look at the long-ranged random correlations. As mentioned before, this quantity is 366 
quite sensitive to the network changes that occur over a period of time. Figure 5 shows plots of 367 
2(r) for Persistent and Recovering groups. In both the cases, we find RS scans staying close to 368 
GOE predictions. This once again is on expected lines.  However, we find a striking difference 369 
between SP and SV scans in the two cases.  370 
 371 
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For the Persistent group, both SP and SV scans show deviations from the theory, with SP scans 372 
clearly showing greater deviations from theory, and SV scans showing only subtle deviations. The 373 
clear deviations of SP scans from GOE for the persistent group is also a reflection of the fact that 374 
they continue to experience the back-pain, hence, they are prone to chronic back-pain. And, as in 375 
the case of initial visit, the subtle differences between SV scans and theory could once again be 376 
attributed to the fact that visual stimulation task involves engagement of fewer brain regions. The 377 
recovering group, however, present a very interesting case. For the Recovering group, both SP and 378 
SV scans match GOE predictions over a larger domain and are indistinguishable from RS scans. 379 
Here, as a result of the medical treatment, the patients have experienced pain remission. As a result, 380 
they have none to very few pain events to report for SP scans. This observation once again 381 
demonstrates the efficacy of RMT in capturing the network changes in brain networks. 382 

 383 
4. Conclusions and Discussion  384 

 385 
Randomness is inherent in all brain networks and it follows the characteristics of GOE of random 386 
matrices. The resting state can be assumed as a normal state, and it defines normal or equilibrium 387 
levels of randomness. Both, cognitive tasks and salient percepts (for example, pain) decrease 388 
randomness as they require more brain regions to be focused. In network concept, resting state 389 
could also be assumed as more random state or a disordered state [27], and cognitive tasks and 390 
salient percepts force it to be more ordered. Hence, task-states can also be interpreted as more 391 
ordered than the normal state. Mathematically, it means deviations from the GOE predictions. 392 
Once the tasks are over, or the salient percepts are no longer there, we would expect the 393 
randomness to reach its normal or equilibrium levels. 394 
 395 
For all the cases, our results demonstrate that the randomness shows maximum agreement with 396 
GOE for the RS scans and it decreases the most for SP scans. So, RS can be viewed as a most 397 
random state, and SP state can be viewed as a most-ordered state. SV state falls between the two. 398 
The resting state is important with regard to BOLD fMRI correlations, and the agreement with 399 
GOE could also be visualized as a single correlation structure that may adequately describe it [7].  400 
Also, the continued agreement of the RS scans with GOE is also consistent with the reasoning that 401 
resting state BOLD correlations reflect processes concerned with long term stability of brain’s 402 
functional organization, and generally do not reflect short term changes in cognitive content [7].   403 
 404 
Further, our results demonstrate that RMT is able to differentiate between two different tasks 405 
within the same subject. Here, we find a pattern consistent with our hypothesis, with randomness 406 
decreasing when the brain is focused on attending to pain triggered in the back of their body. Here, 407 
GOE line represents maximum randomness and Poisson represents no randomness. However, due 408 
to the complexity of the experimental design, there could be many possible conjectures (including 409 
their combinations) explaining these observations.  410 
 411 
First, as the patients are performing a pain-rating task, whereby they are focusing on the back-pain 412 
and reporting the ratings, the observed SP deviations could be attributed to back-pain. As it known 413 
from earlier studies that salient percepts such as pain are known to require more brain areas to be 414 
engaged than visual stimulation[53–55], we see an increased deviation for SP scans relative to SV 415 
scans in all the cases. As more brain regions are engaged in attending to pain, hence relative 416 
randomness between them decreases.  At initial visit, all patients report back-pain, whereas at 417 
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follow-up visit, only a subset of them report back-pain, and because their MPQVAS ratings 418 
demonstrate chronification of pain, the persistent group continues to experience back-pain over 419 
many months. Hence, this continued deviation of SP scans at the follow-up visit in the persisting 420 
CBP group could be viewed as a reflection of chronified pain that continues to affect the GOE 421 
pattern. It is also known that task states can alter the correlation structure of BOLD activity [7] 422 
and hence, the second possible conjecture is the saliency between the tasks themselves. While 423 
visual tasks are relatively easy to perform, pain-rating tasks could be much difficult as back-pain 424 
events are generally random. Hence, more attention is needed to perform these tasks, and thereby, 425 
we observe a decrease in randomness between the brain regions involved in these tasks.  426 
 427 
Finally, in spite of the complexities in the experimental design in the present work, the 428 
observations presented here prepare a platform to study fMRI generated brain-networks using 429 
RMT. RMT could be effectively used in studying metastability of brain networks impacted by 430 
other neuro-psychiatric disorders. Clues from RMT studies on other physical systems, especially 431 
liquids and amorphous solids, could be useful here. For example, normal modes studies on liquids 432 
[29,30] and amorphous systems [27–30] have revealed universal properties whereby, the 433 
fluctuations around the mean spectral densities for stable configurations (local minima) follow 434 
GOE, and deviations from GOE are observed for non-stable configurations.  In this context, RMT 435 
could be used in the energy landscape studies of brain in the detection of metastable states. An 436 
inherent shortcoming of this method is that it is statistical in nature. However, suitable 437 
modifications and adaptations of the methodology in artificial neural networks would be extremely 438 
helpful. The fact that the resting state is a state with maximum randomness could then be used as 439 
a key component in determining any systematic or mechanical errors in fMRI scans. Also, it could 440 
reflect on the long-term stability of brain’s functional organization.  441 
 442 
 443 
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Fig. 3: (a) Normalized neighbor spacing (s) vs probability density p(s) for resting state (red 444 
circles), spontaneous pain (green squares), and standard visual (blue diamonds) scans for the 445 
initial visit. Black line represents GOE prediction and magenta line represents Poisson 446 
distribution; (b) Variance of the number of levels in intervals of length r shown as a function of r 447 
for resting state (red circles), spontaneous pain (green squares), and standard visual (blue 448 
diamonds) for the initial visit. Black line represents GOE prediction and magenta line represents 449 
Poisson distribution. 450 
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  452 
Fig. 4: Normalized neighbor spacing (s) vs probability density p(s) for resting state (red circles), 453 
spontaneous pain (green squares), and standard visual (blue diamonds) scans for (a) Persistent, 454 
and (b) Recovering groups in the follow-up visit. Black line represents GOE prediction and 455 
magenta line represents Poisson distribution. 456 
 457 
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 461 
 462 
 463 
 464 
Fig. 5: Variance of the number of levels in intervals of length r shown as a function of r for 465 
resting state (red circles), spontaneous pain (green squares), and standard visual (blue diamonds) 466 
for (a) Persistent, and (b) Recovering groups in the follow-up visit. For both visits, black line 467 
represents GOE prediction and magenta line represents Poisson distribution. 468 
 469 
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Highlights: 655 
 656 

 Brain networks impacted by back-pain are analyzed from random matrix theory 657 
perspective. 658 
 659 

 The study demonstrates the effectiveness of random matrix theory in differentiating 660 
between resting state and two distinct task states within the same patient.  661 
 662 

 Random matrix theory is effective in measuring systematic changes occurring in 663 
functional connectivity.  664 
 665 

 This study offers new insights on how acute and chronic pain are processed in the 666 
brain at a network level.  667 
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