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The nucleus accumbens-prefrontal connectivity as
a predictor of chronic low back pain
Adam Sunavskya,b, Muhammad Ali Hashmic, Jason William Robertsona, Jennika Veinota, Javeria Ali Hashmia,*

Abstract
The nucleus accumbens (NAc) and its prefrontal connections are implicated in the aetiology of chronic low back pain (CLBP). Both
animal and human studies suggest that theNAc and its connections play a critical role in the transition fromacute toCLBP.However,
whole-brain connectivity in people with longstanding CLBP has not been systematically investigated. We used a functional
connectomics approach to examine whether the 2 NAc subregions (shell and core) exhibit different whole-brain connectivity
between CLBP patients and healthy controls (HCs; total N5 197). The identified connections were correlated with CLBP intensity
(corrected), and their reproducibility was validated in 2 independent cohorts. These clinically relevant and reproducible connections
were further leveraged to classify CLBP using machine learning. Compared with HC (n 5 41), individuals with CLBP (n 5 39)
exhibited hyperconnectivity between the NAc shell and core and the prefrontal cortex (PFC). Although several NAc-PFC
connectionswere linked to higher CLBP intensity, only the connections between the left NAc shell and core and the right dorsolateral
PFCwere reproduced in validation cohorts (total CLBPn5 53; HC n5 64). Nucleus accumbens-right dorsolateral PFC connections
achieved 84% classification accuracy using logistic regression. Themachine learning analyses demonstrate how knowledge-based
feature selection can reliably detect CLBP. Overall, we report that NAc-PFC connectivity consistently distinguishes people with
CLBP from HC and suggest an abnormal interaction between the NAc and brain regions involved in motivation, decision-making,
and pain regulation.AU1

1. Introduction

Persistent intense pain fundamentally alters the perception of
noxious events, causing even harmless sensations to be
perceived as painful.47 Such alterations affect the neural path-
ways regulating pain and motivation, leading to avoidance
behaviors and reduced activity, which further exacerbates pain.58

The cortico–striatal pathway—critical for motivation, pain regu-
lation, and decision-making—is believed to be a prominent
feature of chronic pain.6,26,30 Central to this circuit is the nucleus
accumbens (NAc); its connections with the prefrontal cortex
(PFC) have been implicated in the aetiology of chronic low back
pain (CLBP).4,25 Studies in animals and humans investigating the

transition from acute to chronic pain suggest that NAc-PFC
connectivity is pivotal in CLBP development.6,24,27,31,60 In
humans, NAc connectivity with the medial PFC measured at
a subacute stage of back pain predicted the persistence of back
pain after 6 months to 1 year.6 This finding was recently
reproduced in an independent data set.30 Several studies have
also implicated the NAc-PFC axis in altered regulation of
motivation, emotion, and sociability in human6,21,46 and ani-
mal24,27,60models of chronic pain. Recently, Makaryet al.31 found
that functional connectivity of the 2 main NAc substructures, the
shell and core, with the rostral anterior cingulate cortex (BA 32),
differentiated people with persistent back pain from those who
recovered. Considering the involvement of the NAc in motiva-
tional processes, aberrant NAc connectivity begets a modulated
experience of pain associated with changes in coping, motiva-
tion, attention toward pain, and emotion regulation.2

Nucleus accumbens connectivity has been studied for its in-
volvement in the development of chronic pain, but its role in the
symptomatology of fully developed CLBP remains ambiguous.
Observing brain regions that have a synchronized pattern of
fluctuations with the NAc in resting-state functional MRI(fMRI) can be
a useful marker for detecting CLBP. Whole-brain functional connec-
tivity of NAc substructures has been used to predict the transition from
acute to chronic back pain, but the accumbens’ role in long-standing
CLBP needs systematic investigation. From animal work, it is well-
known that NAc core and shell have functionally different roles,
particularly in reward processing and learning, but whether these 2
subregions show differences in functional connectivity within and
between CLBP and control populations is unknown.5,31,46

In this study, we first investigate whether the NAc exhibits
significant connectivity differences between healthy individuals and
those with CLBP. We analyze whole-brain resting-state functional
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connectivity (rsFC) of the NAc shell and core and identify rsFC
differencesbetweengroups. Subsequently, wedetermine functional
connections that are significantly correlated with CLBP intensity to
identify clinical relevant connections. We then test the reproducibility
of clinically relevant rsFC patterns in 2 additional cohorts with varying
demographics and MRI acquisition parameters. We deploy receiver
operator characteristic curves, logistic regression, and machine
learning (ML) to evaluate the accuracy of clinically relevant NAc
connections in classifying healthy control (HC) and CLBP groups.
We hypothesized that NAc-PFC connectivity would reliably distin-
guish CLBP from HC groups, and that a subset of rsFC patterns
would reproduce between different study cohorts.

2. Methods

2.1. Participants

This study was approved by Nova Scotia Health Research Ethics
Board. This study is part of a larger study directed at understanding
biopsychosocial and neurological factors associated with treatment
failure in CLBP (ClinicalTrials.gov randomized controlled trial
#NCT02991625). The main goal of this project was to study the
scope and limits of neuroimaging for identifying reproducible and
reliable findings that can pinpoint chronic painmechanisms. Healthy
and CLBP participants were recruited through advertisements
posted in the community around Dalhousie University and the
Victoria General Hospital in Halifax. Chronic low back pain patients
were additionally recruited from the Pain Management Unit of the
VictoriaGeneral Hospital and other clinical centres in the community.
Both HC and CLBP patients were required to be right-handed,
between the ages of 18 and 75 years, and comfortablewith reading,
writing, and taking instructions in English. Subjects were excluded if
they had medical conditions that would interfere with the study (eg,
respiratory or cardiac conditions), contraindications toMRI scanning
(eg, claustrophobia, metal implants, or dental braces), or visual
impairment that could not be corrected with eyewear or contact
lenses. In addition, healthy participants were excluded if they had
ongoing acute pain, chronic pain, nerve compression resulting in
sensory loss, or if they were taking pain medications. Chronic back
pain patients were required to have had low back pain for 6 or more
months and an average of at least 4/10 daily pain intensity on the
Brief Pain Inventory (BPI)13 2 weeks before enrolment.

The data were subdivided into a test cohort (cohort 1: n 5 39
CLBP and 41 HC), an in-house validation cohort (cohort 2: n 5 18
CLBP, n5 31HC), and an offsite validation cohort (cohort 3: n5 34
CLBP and 33 HC). Cohort 3 was obtained from openpain.org that
used different fMRI acquisition parameters. The open pain project
(Principal Investigator: A. Vania Apkarian, PhD at Northwestern
University) is supported by the National Institute of Neurological
Disorders and Stroke and National Institute of Drug Abuse.

2.1.1. Cohort 1

One resting-state scan from41HCand the average of 2 resting-state
scans from 39CLBP patients were used as the test cohort. Note that
during analysis, we examined the effects of each of the 2 CLBP
resting-state scans separately with the HC resting-state scan before
averaging them. The significant findings were established in cohort 1
and were further tested for reproducibility in cohorts 2 and 3.

2.1.2. Cohort 2

Data from a single resting-state fMRI scan were compared
between 19 CLBP patients and 31 HC participants. This data set

included the participants who had only 1 resting-state scan
available, along with newly recruited participants scanned during
the time of analysis for cohort 1. This in-house data set provided
an opportunity to test the reproducibility of the results, using
onsite data with identical acquisition parameters but varying
demographic profiles. This allowed for the assessment of
reproducibility across consistent imaging conditions, but different
participants.

2.1.3. Cohort 3

Data consisting of 1 resting-state scan were compared between
33 HC and 34 CLBP. These offsite data were obtained from
openpain.org and were used for testing reproducibility in data
with different demographic and acquisition parameters.

2.2. Neuroimaging procedure

Cohorts 1 and 2 data were collected with a 3.0 T MRI scanner
(Discovery MR750; General Electric Medical Systems, Wauke-
sha, WI) with a 32-channel head coil (MR Instruments, Inc,
Minneapolis, MN) at the Biomedical Translational Imaging Centre
at the Veterans’ Memorial Building of the Queen Elizabeth II
Health Sciences Centre in Halifax, NS, Canada. To minimize
movement, participants’ heads were fitted with foam padding.
Participants were reminded to keep their head still before each
scan took place, and ear plugs were provided to reduce noise
levels.

We acquired T1-weighted anatomical images (GE sequence
IR-FSPGR: field of view 5 224 3 224 3 184 mm; in-plane
resolution 5 1 3 1 3 1 mm; reptition time [TR]/echo time [TE] 5
4.4/1.908 milliseconds; flip angle 5 9˚) from both HC and CLBP
patients. Blood oxygenation level–dependent signal sequences
for fMRI were acquired using a multiband EPI sequence: field of
view 5 216 3 216 3 153 mm; in-plane resolution 5 3 3 3 3 3
mm; TR/TE 5 950/30 milliseconds, SENSE factor of 2,
acceleration factor of 3. Reverse phase-encoded images were
also acquired to enable distortion correction. Only resting-state
scans were used for these analyses: Sequences of 500 volumes
were acquired from all subjects with eyes open, staring at
a fixation cross displayed on a screen.

Cohort 3 (the second validation data cohort) was collected
using an 8-channel head coil with parameters TR/TE 5 2500/30
milliseconds and voxel size of 3.44 3 3.44 3 3.44 mm, with the
scan lasting 305 volumes (762.5 seconds) for 17 CLBP patients
and 17 HC; 244 volumes (610 seconds) for 17 CLBP patients and
7 HC; and 300 volumes (750 seconds) for 9 HC.

2.3. Preprocessing

All neuroimaging data were preprocessed with the Analysis of
Functional NeuroImages,14 FreeSurfer,16 and FMRIB Software
Library (FSL)23 packages based on scripts provided by the 1000
Functional Connectome Project.8 The parameters for prepro-
cessing are based on previously published work.3,29,36

The T1 anatomical images were preprocessed using Free-
Surfer’s autorecon1 sequence, which includes motion correc-
tion, intensity normalization, and Talairach transformation. Masks
were then generated for stripping the skull away from the image,
leaving only the brain; these masks were reoriented to match the
original scans then used to crop it. These skull-stripped images
were retained for later use.

The functional data were then preprocessed. First, they were
corrected for field map distortion using FSL’s topup. Next, the first
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5 volumeswerediscarded for signal equilibrium, then thedatawere
corrected for motion through Fourier interpolation. At this point, 6
motion parameters were calculated for the subject’s rotational
movement around 3 degrees of freedom (pitch, yaw, and roll axis)
and cardinal directional movement in the x-, y-, and z-planes.
Then, the skull was stripped, and a sample image from the mean-
aligned data was extracted for registration. After that, spatial
smoothingwas performed using a Gaussian kernel with a full width
at half maximum of 6 mm, and the voxels were intensity-
normalized, temporally filtered (0.005-0.3 Hz), and detrended.
However, due to the potential concern of spatial smoothing
negatively affecting spatial resolution, we also ran the same
preprocessing procedure without the 6 mm smoothing filter and
tested whether they produced the same results for the main study
conclusions. Next, nuisance time courses for the global signal,
cerebrospinal fluid, and white matter were calculated using masks
from the image segmentation of the participant’s T1-weighteddata
with a tissue-type probability threshold of 80%. These nuisance
signals, alongwith the 6motion parameters,were then removedby
regression in the native functional space. Functional images were
then registered to the Montreal Neurological Institute (MNI-152)
standard template using FMRIB’s Linear ImageRegistration Tool in
3 steps: (1) registering thenative spacestructural image to theMNI-
152 2 mm template using a 12 degree of freedom linear affine
transformation; (2) registering the native space functional image to
the high-resolution structural image with a 6 degree of freedom
linear transformation; and (3) computing native functional to
standard structural warps by concatenating the matrices com-
puted in the first 2 steps.

2.4. Data quality

For data quality verification, we calculated maximum framewise
displacement and the derivative of variability across voxels, using
previously published methodologies37 to assess and exclude
participants with high motion. Participant data with maximum
framewise displacement above 3 mm or derivative of variability
across voxels outliers inmore than 30%of the acquired data were
removed from the analysis.38 None of the participants showed
motion above these thresholds.

2.5. Brain parcellation and time series extraction

Wedivided the brain’s spatial domain into a set of nonoverlapping
regions using an optimized Harvard-Oxford parcellation with 131
regions that have been previously used in our laboratory.22,38,48

However, because our main seed regions of interest (ROIs) were
the shell and core of the NAc, we replaced the bilateral NAc
regions provided by the Harvard-Oxford parcellation with 4 ROIs
representing the left and right shell and core from a parcellation
scheme derived from diffusion tractography,11 as they closely
matched the regions demarcated by immunohistochemistry.
Thus, a total of 133 regions were used in the analysis.

To make these new NAc ROIs compatible with the rest of the
data set and to ensure no overlap, the original masks provided by
Cartmell11 were used as a reference to draw newmasks using the
edit mode in FSLeyes and the following parameters: (1) 3D voxel
mode, (2) selection size 5 1, (3) MNI 2 mm3 standard space, (4)
lower threshold cut-off of 0.495, and (5) upper threshold cut-off of
0.900. This resulted in ROIs with 14 voxels for the left core, 28
voxels for the right core, 43 voxels for the left shell, and 50 voxels
for the right shell. The (x, y, z) coordinates for the left core were
(210.2, 14.3,26.9), right core (11.6, 15.7,27.4), left shell (28.2,
9.9,29.2), and right shell (7.5, 9.8,28.7) in theMNI space. These

masks largely overlapped those from other studies parcellating
the shell and core.5,53,54 A depiction of the core and shell
parcellation used is provided in Supplementary Figure 1 (available
at http://links.lww.com/PAIN/C271).

The blood oxygenation level–dependent time series from each
of the 133 parcellated regions were extracted from each voxel
and averaged, resulting in 133 time series for each participant.
The left and right NAc shell and core time series were correlated
with the remaining 129 regions to create 4 3 129 correlation
matrices that described the rsFC of the NAc.

2.6. Functional connectivity analysis

Functional connectivity analyses were conducted in MATLAB
(R2020a; The Mathworks, Natick, MA). Within and between
group analysis were performed using a 2-way analysis of
covariance (ANCOVA) with a 23 2 factorial design (HC/CLBP3
shell/core) in the left and right sides separately with age as
a covariate of no interest. Specific connections that were different
in within-group (shell . core and core . shell) and between-
groups (CLBP . HC and CLBP , HC) were extracted and post
hoc t tests were conducted for the 4 3 129 edges with false
discovery rate (FDR) correction at q , 0.05. Finally, age and sex
effects were tested using an ANCOVA on the significant CLBP.
HC analyses with age and sex as covariates of no interest in
cohort 1. In addition, age and sex effects were tested by pooling
the combined data from all 3 cohorts and comparing CLBP and
HC by using a multivariate ANCOVA (MANCOVA). Brain images
were created using BrainNet Viewer.52 To describe the brain
subnetworks involved in shell and core connectivity and their
differences between HC and CLBP patients, we determined
whether the significant nodes from the rsFC analysis above
belonged to one of the 5 canonical resting-state networks: (1)
subcortical, (2) sensory, (3) default mode, (4) attention/executive,
and (5) language/memory, as described previously.22,38

To verify and test reproducibility of the findings, we assessed the
connections in the main results from cohort 1 for their clinical
relevance by analyzing the correlations between all surviving
connections and CLBP intensity. After evaluating skewness and
kurtosis, Pearson R correlations were performed with the connec-
tivity measures. The connections that were significantly associated
after correction for multiple comparison (FDR q, 0.10) were further
assessed for reproducibility in the remaining cohorts.

2.7. Questionnaires

For patient characteristics, we used theBPI,13 Beck De-
pression Inventory,7 and McGill Pain Questionnaire (MPQ).33

Participants also provided information on medications they
were currently taking to manage their pain, which was
quantified using the Medication Quantification Scale
(MQS).20 Pain intensity scores were evaluated by the pain
intensity subscale of the Neuropathic Pain Scale.18 In addition,
we used the Pain Catastrophizing Scale, which has subscales
of pain rumination, magnification, and helplessness.45 The
Pain Vigilance and Awareness Questionnaire32 was used with
subscales of attention to pain and attention to changes in pain.
All questionnaires were administered through REDCap (http://
www.project-redcap.org); data were stored electronically.
Questionnaire responses and demographic data were com-
pared groupwise between HC and CLBP subjects using
independent-sample t tests. Equality of variances were
checked with the Levene test; if any comparisons failed, then
appropriately adjusted statistics were reported.
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2.8. Reproducibility in additional data cohorts

To assess reproducibility of the domain knowledge-based
predictors derived from NAc connectivity, we used a stepped
approach. First, we tested whether the findings replicated in
cohorts 2 and 3 (combined and separately) within each cohort.
At this stage, we evaluated the predictive accuracy of
individual features using receiver operating characteristic
(ROC) curve analysis of each predictor separately. Second,
we examined whether combining only reproducible features in
a logistic regression model improved classification accuracy
by accounting for additional variance. While ROC curves
assess the discriminative power of individual features within
cohorts, logistic regression evaluates predictive performance
by integrating features. Third, we randomized and split data
from all 3 cohorts into training and holdout test sets, reducing
cohort-specific effects. We then tested whether a ML classifier
trained on those domain knowledge-driven features general-
ized to previously unseen data. For a schematic representation
of the analyses and data used for each one, please refer to

F1 Figure 1.
The first set of reproducibility analyses relies on a statistical

approach to assess reproducibility across cohorts with
specific demographics and characteristics The NAc-PFC
connections that were significantly correlated with chronic
pain intensity were assessed for reproducibility and accuracy
for classifying between CLBP and HC groups in the test data
set (cohort 1) and in the validation data set (cohort 2 and 3). We

checked the sensitivity and specificity of the independent
connections in distinguishing the HC from CLBP, and we
plotted ROC curves and calculated the area under the curve
(AUC) for each NAc-PFC functional connectivity in cohort 1
and in validation sets (cohorts 2 and 3). Area under the
curve .0.9 was considered a good predictor, 0.7 , AUC ,
0.9 was considered a moderate predictor, and AUC,0.7 was
considered a weak predictor.

Second, the connections that reproduced between cohorts
were further evaluated for reproducibility and accuracy using
logistic regression in cohort 1 and combined cohorts 2 and 3. A
logistic regression using the ENTER method was applied to the
pooled data from all 3 cohorts to estimate cumulative accuracy in
classifying CLBP from HC.

Third, the statistical approach was compared with aML-based
approach. For ML, we used the finalisedmetrics for training aML-
based classifier using data combined and randomised from
cohorts 1, 2, and 3. The data set consisted of 197 samples with 4
features and a target label. The data were initially split into training
and test (hold out sample) sets with an 80 to 20 split.
Randomization in ML is critical because without it—if the data
were split based on distinct cohorts—the model would learn to
classify based on the cohort-specific features such as de-
mographics, clinical characteristics, or scanning parameters.
This would bias the model toward recognizing those specific
cohort attributes rather than general patterns, resulting in poor
generalizability and overfitting.55 Hence, the final 4 rsFC metrics

Figure 1. Schematic representation of the study analyses and data used for each analysis. ANCOVA, analysis of covariance; CLBP, chronic low back pain; HC,
healthy control; NAc, nucleus accumbens; ROC, receiver operator characteristics.
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for the total 197 participants were used for classifying the 2 target
labels (HC n 5 105 and CLBP n 5 92). To evaluate the
performance of various classifiers, we implemented 5-fold cross-
validation for training and then tested the accuracy of the trained
classifiers on the 20% of data held out.25,38 The 4 classifiers
tested were logistic regression, random forest, support vector
machine, and k-nearest neighbors. Each classifier’s hyper-
parameters were tuned using cross-validation, which optimizes
the model’s performance by systematically searching for the best
combination of values. Accuracy and F1 score were the key
performance metrics used in this study. Accuracy measures the
proportion of correctly classified instances of the total instances,
providing an overall effectiveness of the model; F1 score, which is
the harmonic mean of precision and recall, balances false
positives and false negatives. This makes it particularly useful
for imbalanced data sets where class distribution is unequal.

3. Results

Participant demographics and clinical characteristics of theCLBP
group are described inT1 Table 1. In the initial data set (combined

rest 1 and 2), CLBP patients were significantly older (t(94) 5
4.713, P , 0.001), had significantly higher depression scores
(t(91) 5 5.806, P , 0.001), and had significantly higher pain
catastrophizing scores (P , 0.001) relative to HC. In cohorts 2
and 3, there were no significant differences other than CLBP
patients having higher depression scores relative to healthy
participants (P , 0.001).

3.1. Nucleus accumbens core and shell show different
patterns of connectivity with resting-state brain networks

In both CLBP patients and HC, the NAc core was more
synchronized with the salience network and subcortical regions
(caudate, putamen, and thalamus) relative to the NAc shell
( F2Fig. 2). In contrast to the NAc core, the NAc shell showed
relatively greater synchrony with default mode network (DMN)
regions such as the ventromedial PFC and posterior cingulate
cortex, and with language/memory networks regions such as the
hippocampus, middle temporal gyrus, and amygdala (whole-
brain corrected at P , 0.05; within group analysis). Supplemen-
tary Table 1 (available at http://links.lww.com/PAIN/C271)

Table 1

Demographic and clinical parameters in the chronic low back pain and healthy control groups in the initial cohorts 1 to 3.

No. of CLBP No. of HC CLBP HC

Cohort 1: Test data set

Age 57 41 43.02 6 1.82 31.76 6 1.55***

Sex 57 41 F: 39; M: 18 F: 22; M: 19

PCS 52 41 21.40 6 1.37 12.59 6 1.56***

BDI-II 52 41 15.42 6 1.40 5.90 6 0.86***

Time since diagnosis (y) 40 — 7.48 6 0.98 —

Duration of treatment (y) 40 — 7.05 6 0.84 —

MPQ sensory 52 — 15.90 6 0.85 —

MPQ affective 52 4.88 6 0.40 —

NPS total 52 — 46.25 6 1.74 —

NPS pain intensity 52 — 59.04 6 2.82 —

BPI average pain 53 — 51.74 6 2.12 —

MQS 54 — 6.61 6 0.88 —

Cohort 2: Validation data set I

Age 19 31 45.581 6 14.01 44.83 6 13.32

Sex 18 30 F: 14; M: 17 F: 11; M: 7

BDI-II 15 30 13.44 6 1.81 8.03 6 1.27***

Time since diagnosis (y) 9 — 7.96 6 1.99 —

Duration of treatment (y) 10 — 5.88 6 0.97 —

VAS (MPQ) 14 — 5.5 6 0.1

MPQ sensory 15 — 16.44 6 1.544 —

MPQ affective 15 — 4.63 6 0.49 —

NPS total 15 — 46.06 6 2.328 —

NPS pain intensity 15 — 66.25 6 3.14 —

BPI average pain 15 — 57.5 6 2.57 —

MQS 18 — 6.6 6 1.6 —

Cohort 3: Validation data set II

Age 34 33 49.24 6 1.47 49.61 6 1.39

Sex 34 33 F: 15 M: 19 F:14 M:19

BDI-II 34 33 6.26 6 1.00 1.58 6 0.46

Pain duration (y) 34 — 15.74 6 1.94 —

VAS (MPQ) 34 — 6.66 6 0.29 —

Combined cohorts: Average of validation data

sets I and II

Age 51 54 47.7 6 0.2 47.5 6 0.18

Sex 52 54 F: 27; M: 25 F: 30; M: 36

VAS (NPS/MPQ) 50 — 6.3 6 0.03 —

Significances: ***P , 0.001. Age was added as a covariate of no interest in whole-brain analyses on test data sets. The validation set was matched for age.

BDI-II, Beck Depression Inventory-II; BPI, Brief Pain Inventory; CLBP, chronic back pain; F, female; HC, healthy controls; M, male; MPQ, McGill Pain Questionnaire; MQS, Medication Quantification Scale; NPS, Neuropathic Pain

Scale; PCS, Pain Catastrophizing Scale; SEM, standard error of the mean; VAS, visual analog scale.
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provides a comprehensive list of all the significant edges found for
each contrast in HC and CLBP.

3.2. Differences in nucleus accumbens connectivity between
people with chronic back pain relative to healthy controls

First, we observed that there was no significant difference
between shell and core connectivity in the region-wise (main
effect of region, shell3 core in the right [P5 0.635] or left [P5
0.994] side). On testing group differences, there were
significant differences between CLBP and HC in NAc whole-
brain connectivity in the left (P 5 0.003) and right (P 5 0.003)
NAc (main effect of group, corrected for age and sex, and for
multiple comparisons at q , 0.05, between-group analysis).
Participants with CLBP demonstrated significantly more
connectivity between NAc and several prefrontal regions
including the dorsolateral (dlPFC) and dorsomedial PFC
(dmPFC) relative to the healthy group (F3 Fig. 3;

T2

Table 2). In
addition, CLBP patients demonstrated hypoconnectivity with
sensory regions and language memory networks.

3.3. Associations between resting-state functional
connectivity networks, pain intensity, catastrophizing,
and hypervigilance

The identified NAc-PFC connections were correlated with clinical
symptoms of CLBP. Chronic pain intensity was associated with
NAc-PFC connections ( F4Fig. 4, FDR q, 0.10 for each NAc node)
showing that higher pain intensity was correlated with high
connectivity in the left NAc shell-right dlPFC (r5 0.32,P5 0.022),
left NAc core-right dlPFC (r 5 0.37, P 5 0.007), left shell-left
dmPFCa (r5 0.33, P5 0.018), left shell-right dmPFCa (r5 0.37,
P5 0.007), left core-left dmPFCa (r5 0.36, P5 0.010), and the
left core-right dmPFCa (r 5 0.43, P 5 0.001). Finally, in the
CLBP , HC contrast, chronic pain intensity was significantly
negatively correlated with the left core-right temporal occipital
fusiform cortex (r 5 20.50, P , 0.001).

Next, the connectivity measures that correlated with pain were
also explored for their correlation with pain catastrophizing and
hypervigilance (exploratory uncorrected result). There was
a significant association between hypervigilance to changes in
pain and rsFC between the left and right NAc shell and the left

Figure 2. Functional connectivity contrast analyses showdifferences in connectivity of theNAccore andshellwithinHCsandCLBPpatients. (A) Thesignificant core. shell
contrasts in HCand (B) in CLBP patients. Overall, the corewasmore connected to subcortical and sensory network regions in both groups. (C) The significant shell. core
contrasts in HC and (D) in CLBP patients. These showmore connections to language, memory, and default mode network regions in the shell relative to the core in both
groups. For the complete list, see Supplementary Table 1 (available at http://links.lww.com/PAIN/C271). Left and right brain images represent sagittal views; the top set are
viewed from the lateral side while the bottom set are viewed from the medial side at the midbrain. Whole-brain corrected at P, 0.05. ACCrm, rostral anterior cingulate
cortex mid posterior; ACCrp, rostral anterior cingulate cortex posterior; ACCsg, subgenual anterior cingulate cortex; Amyg, amygdala; CLBP, chronic back pain; Cingp,
cingulate gyrus posterior division; dINSa, dorsal anterior insula; dmPFCa, dorsal medial prefrontal cortex anterior division; HC, healthy control; Hipp, hippocampus;mPFC,
medial prefrontal cortex; MTGa, middle temporal gyrus anterior division; vmPFC, ventromedial prefrontal cortex.
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dmPFCa (r 5 0.28, P 5 0.039) and the left dlPFC (r 5 0.33, P5
0.022), respectively. Moreover, pain catastrophizing scores were
significantly correlated with the left shell (r5 0.34, P5 0.014) and
left core (r 5 0.36, P 5 0.010) connectivity to the right dmPFC.

3.4. Reproducibility and validation analyses

We explored whether the clinically relevant hyperconnectivity
patterns showed meaningful accuracy in identifying people with
CLBP relative to HCs. We selected all the connections that
predicted high pain intensity (positive correlations) after correcting
for multiple comparison in the preceding analysis. These
comprised 6 NAc-PFC connections as shown inF5 Figure 5. We
analyzed the effects of using 1 vs 2 resting-state scans, age and
sex effects, and spatial intensity smoothing during preprocess-
ing. The validated connections were then analyzed for re-
producibility in validation cohorts using statistics and evaluated
accuracy using ROC curves.

The distributions and mean rsFC values for the 6 significant
contrasts of HC andCLBP for cohort 1 are shown in Figure 5A. In
addition, the AUC values from ROC analysis for cohort 1 (Fig. 5B)
showed that the rsFC values between the left shell-right dlPFC,
the left core-right dlPFC, left shell-left dmPFCa, and left core-left

dmPFCa were moderate predictors of classifying between HC
and CLBP groups (AUC $0.7). Because the rsFC observed for
CLBP in this analysis was taken from the average of 2 scans, we
confirmed that the results remained similar even if the HC rsFC
was compared separately for scan 1 and scan 2 (Supplementary
Fig. 2, available at http://links.lww.com/PAIN/C271). Owing to
the potential concern of spatial smoothing negatively affecting
spatial resolution, we also ran the same preprocessing procedure
without the 6 mm smoothing filter and confirmed that the results
were similar without intensity smoothing for cohort 1 (Supple-
mentary Table 2, available at http://links.lww.com/PAIN/C271).
In addition, the rsFC differences between HC and CLBP
remained significant after correcting for age and sex (Supple-
mentary Table 3, available at http://links.lww.com/PAIN/C271).

Next, we testedwhether these connections could be reproduced
in out-of-sample validation data (cohorts 2 and 3 combined) (Fig. 5C
and D). There was significantly higher connectivity between the left
shell with the right dlPFC (P5 0.003) and between the left core and
right dlPFC (P5 0.003) in CLBP relative to HC in this validation set.
We also tested the connections for validation cohorts 2 and 3
separately and found that the NAc-dlPFC (right) results reproduced
in cohort 2 and trended toward significance in cohort 3 (Supple-
mentary Fig. 3, available at http://links.lww.com/PAIN/C271). The

Figure 3. Functional connectivity contrast analyses revealed connectivity differences between HCs and CLBP patients in both the NAc shell and core. (A) The
significant CLBP . HC contrasts. (B) A sample of the significant HC. CLBP nodes. (C) Quantification of significant nodes in the CLBP . HC and HC. CLBP
contrasts into their respective networks. CLBP patients had more connections to the attention/executive and default mode networks, while HC had more
connections to language/memory and salience sensory networks. Left and right brain images represent sagittal views; the top set are viewed from the lateral side,
while the bottom set are viewed from the medial side at the midbrain. Whole-brain corrected at P, 0.05. CLBP, chronic back pain; Cop, central operculum; HC,
healthy control; INSm, middle insula; INSp, posterior insula; dlPFC, dorsolateral prefrontal cortex; dmPFCa, dorsal medial prefrontal cortex anterior division;
dmPFCp, dorsal medial prefrontal cortex posterior division; Hipp, hippocampus; STGa, superior temporal gyrus, anterior division.
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Table 2

Differences in functional connectivity in the shell and core between chronic low back pain and healthy control subjects after

correcting for multiple comparisons.

Hemisphere MNI coordinates (x, y, z) t P

HC . CLBP (left core)

Planum polare L 248, 24, 26 24.99 ,0.001

Heschls gyrus L 248, 218, 6 24.62 ,0.001

Central operculum L 248, 24, 8 24.34 ,0.001

Intracalcarine cortex L 26, 274, 12 24.16 ,0.001

Middle insula L 26, 18, 34 23.97 ,0.001

Hippocampus L 228, 222, 16 23.96 ,0.001

Lingual gyrus L 210, 268, 22 23.95 ,0.001

Superior temporal gyrus anterior division L 258, 24, 26 23.95 ,0.001

Posterior insula L 238, 214, 8 23.89 ,0.001

Lingual gyrus R 10, 268, 22 23.47 0.001

Intracalcarine cortex R 26, 274, 12 23.28 0.002

Parahippocampal gyrus, posterior division L 224, 232, 218 23.28 0.002

Supracalcarine cortex L 22, 284, 12 23.10 0.003

Planum temporale L 260, 222, 8 22.99 0.004

Temporal occipital fusiform cortex L 234, 254, 216 22.87 0.005

HC . CLBP (left shell)

Planum polare L 248, 24, 26 25.25 ,0.001

Superior temporal gyrus anterior division L 258, 24, 26 24.85 ,0.001

Hippocampus L 228, 222, 216 24.55 ,0.001

Central operculum L 248, 4, 8 24.35 ,0.001

Heschls gyrus L 248, 218, 6 24.33 ,0.001

Middle insula L 240, 22, 22 24.06 ,0.001

Parahippocampal gyrus, posterior division L 224, 232, 218 24.02 ,0.001

Lingual gyrus L 210, 268, 22 23.88 ,0.001

Intracalcarine cortex L 26, 274, 12 23.76 ,0.001

Posterior insula L 238, 214, 8 23.62 0.001

Temporal occipital fusiform cortex L 234, 254, 216 23.61 0.001

Lingual gyrus R 10, 268, 22 23.47 0.001

Superior temporal gyrus, posterior division L 266, 226, 6 23.13 0.002

Temporal pole L 240, 16, 230 23.08 0.003

Temporal occipital fusiform cortex R 34, 254, 216 23.01 0.004

Temporal fusiform cortex posterior division L 236, 216, 232 23.00 0.004

Planum temporale L 260, 222, 8 22.90 0.005

Occipital fusiform gyrus L 228, 276, 214 22.81 0.006

Intracalcarine cortex R 6, 274, 12 22.76 0.007

Hippocampus R 28, 222, 216 22.69 0.009

CLBP . HC (left core)

Dorsolateral prefrontal cortex R 40, 20, 44 3.69 ,0.001

Dorsal medial prefrontal cortex anterior

division

L 24, 50, 28 3.45 0.001

Dorsolateral prefrontal cortex L 240, 20, 44 3.19 0.002

Dorsal medial prefrontal cortex posterior

division

L 24, 26, 48 3.01 0.003

Dorsal medial prefrontal cortex posterior

division

R 4, 26, 48 2.97 0.004

Dorsal medial prefrontal cortex anterior

division

R 4, 50, 28 2.84 0.006

CLBP . HC (left shell)

Dorsolateral prefrontal cortex R 40, 20, 44 3.96 ,0.001

Dorsal medial prefrontal cortex anterior

division

L 24, 50, 28 3.41 0.001

Dorsolateral prefrontal cortex L 240, 20, 44 3.31 0.001

Dorsal medial prefrontal cortex posterior

division

L 24, 26, 48 3.24 0.002

Dorsal medial prefrontal cortex posterior

division

R 4, 26, 48 3.06 0.003

Dorsal medial prefrontal cortex anterior

division

R 4, 50, 28 2.92 0.005

(continued on next page)
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shorter resting-state scan and lower acquisition resolutionmay have
contributed to nonsignificant results in cohort 3. To study the
sensitivity and specificity of the identified functional connectivity
patterns in distinguishing CLBP fromHC,we used anROCanalysis.
Noneof theconnections reachedanAUC.0.7 in validationcohorts;
however, 2 connections had AUC$0.65 (Fig. 5D).

3.5. Combined nucleus accumbens-dorsolateral prefrontal
cortex resting-state functional connectivity gives higher
accuracy for distinguishing healthy control and chronic low
back pain groups

The NAc connectivity with right dlPFC showed the most consistent
difference between CLBP and HC in the preceding results. Hence,
we compared the connectivity of all 4 NAc regions (left and right shell
and core) with the right dlPFC in the test and validation groups for
their combined accuracy in distinguishing between HC and CLBP
groups. The connectivity patterns were consistent: the left and right
core, and the right shell showed hyperconnectivity with the right
dlPFC inCLBPand individually showeda low-to-moderate accuracy
in distinguishing HC from CLBP (F6 Fig. 6). Significance for the
comparisons was not tested to avoid circular analysis.

Adding all 4 connectivity scores to a logistic regression model
for classifying HC vs CLBP using the ENTER method showed
a high accuracy for classification. In the test set, 74% cases of
CLBP could be accurately classified, where the model explained
a moderate portion of variance in rsFC (Nagelkerke R2 5 0.272)
and the 22 Log Likelihood was 92.6, indicating the fit of the
model to the data. In the validation set, 83% cases of CLBP could
be accurately classified. Themodel explained amoderate portion
of variance in rsFC (Nagelkerke R2 5 0.38). The 22 Log
Likelihood was 122.4 indicating the model fit.

Next, we used the 4 NAc rsFC scores to assess accuracy with
a ML-based approach in all available data (cohorts 1, 2, and 3;
n5 197, CLBP5 92 and HC5 105). Data were randomised with
an 80% training set with 5-fold cross validation and 20% test
holdout set. The results comparing 4 different types of classifiers
are summarized inT3 Table 3. Machine learning–based logistic
regression emerged as the best classifier for this data set,
demonstrating highest performance in the holdout test set.

Effects of age and sex were tested by pooling data for the
identified connections from all 3 cohorts and comparing CLBP
with HCby using aMANCOVA. The overall model and all post hoc
comparisons between the 2 groups were significant (P , 0.001)
after correction. There were no significant main interaction effects
of age (P 5 0.35) or sex (P 5 0.77).

3.6. Exploratory correlation analysis with chronic pain
symptoms and demographics

Effects of age and sex were tested by pooling data for the 6
identified connections from all 3 cohorts and comparing the

connectivity of CLBP with HC while using age and sex as
a covariate (MANCOVA). The overall model and all post hoc
comparisons between the 2 groups were significant (P , 0.001)
after age and sex correction. There were no significant main
interaction effects of age (P 5 0.35) or sex (P 5 0.77).

To assess the clinical significance and behavioral relevance of
the identified connections in cohorts 1 and 2, we summarized the
rsFC results by averaging: (1) rsFC values between the right
dlPFC and the left core, left shell, and (2) rsFC values between the
left and right dmPFCa and each of the 4 NAc regions. We then
separately correlated the averaged rsFC values for (1) and (2) with
clinical metrics (BPI, Beck Depression Inventory, State-Trait
Anxiety Inventory state and trait, MPQ sensory and affective,
MQS, Pain Catastrophizing Scale, and Pain Vigilance and
Awareness Questionnaire) in the CLBP group. Significant (un-
corrected) positive correlations were found between NAc-dlPFC
rsFC averages (see 1) and affective MPQ scores (r 5 0.3, P 5
0.036, n5 50), higher pain intensity (BPI average pain: r5 0.22,
P 5 0.029), and number of areas affected (BPI, r 5 0.192, P 5
0.048). In addition, higher NAc-dmPFCa rsFC averages (see 2)
were significantly associatedwith higher BPI current pain intensity
(r 5 0.199, P 5 0.034) and greater medication use on MQS (r 5
0.196, P 5 0.042). No other metrics showed significant
associations with the identified rsFC values.

4. Discussion

Both animal and human studies have suggested that hyper-
connectivity between the NAc and its prefrontal connections is
implicated in the aetiology of CLBP.6,24,27,30,31,60 We also report
NAc-PFC hyperconnectivity in people with CLBP. These con-
nections were predictive of higher CLBP intensity, underscoring
their clinical relevance. Of these, only the NAc-right dlPFC
connections could be reproduced in new cohorts of participants
with different demographics and data acquisition parameters.
Combining all 4 NAc-right dlPFC functional connectivity values
gave a classification accuracy of 84% in the validation cohort. A
ML-based approach in which all data were combined, rando-
mised, and split into test and holdout data sets gave a similar
accuracy of 77.5% in the holdout sample. Given the roles of the
NAc and dlPFC in reward, motivation, and executive functions,
further investigation with larger, more diverse cohorts is needed
to uncover mechanistic insights into maladaptive cognitive and
motivational responses to CLBP and to confirm CLBP-related
neural adaptations.

4.1. Differential nucleus accumbens core and shell
connectivity in healthy control and chronic low back pain

The NAc serves as a central hub within the brain’s reward
circuitry, facilitatingmotivation processing to acquire rewards and
avoid unpleasant stimuli.40–42Working alongside sensory regions

Table 2 (continued)

Hemisphere MNI coordinates (x, y, z) t P

HC . CLBP (right shell)

Hippocampus L 228, 222, 216 23.92 ,0.001

Posterior insula L 238, 214, 8 23.77 ,0.001

Central operculum L 248, 24, 8 23.45 0.001

Planum polare L 248, 24, 26 23.45 0.001

Heschls gyrus L 248, 218, 6 23.45 0.001

Superior temporal gyrus, anterior division L 258, 24, 26 23.40 0.001

No significant values were found for the right core, HC . CLBP and CLBP . HC, as well as for right shell, CLBP . HC.

CLBP, chronic low back pain; HC, healthy control.
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Figure 4. The significant contrasts in the CLBP . HC rsFC comparison were used in further analyses to determine clinical pain parameter correlations. (A) Axial
view of significant rsFC connections between the NAc shell and core and regions that were correlated with chronic pain intensity. (B) Distribution of the pain
intensity scores. (C-H) Scatter plots of CLBP intensity with the (C) LS-R dlPFC, (D) LC-R dlPFC, (E) LS-L dmPFCa, (F) LS-R dmPFCa, (G) LC-L dmPFCa, and (H)
LC-R dmPFCa. LC, left core; LS, left shell; NAc, nucleus accumbens; dmPFCa, dorsal medial prefrontal cortex anterior division; dlPFC, dorsolateral prefrontal
cortex; rsFC, resting-state functional connectivity; VAS, visual analog scale. Correlations were false discovery rate corrected for multiple comparisons at q, 0.1.AU5
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and the basal ganglia, the NAc controls the impact of sensory
input on our behavioral responses. The NAc helps prioritize
certain types of actions to achieve goals through its connectivity
with the PFC. It adjusts behaviors such as physical effort, reacting
to familiar cues, anticipating events, or controlling responses to
reach objectives.39–41 In pathological states such as CLBP or
major depressive disorder, disturbances in NAc connectivity can
lead to dysregulation in emotional processing and motivational
deficits.4,43,44We report that the shell of theNAc exhibited greater
connectivity with the DMN and regions related to language and
memory processing compared with the core in both HC and
participants with CLBP. By contrast, the core showed stronger
connections with sensory and subcortical regions in both groups.
However, in comparisons between HC and CLBP patients, both
the shell and core of the NAc were hyperconnected with the PFC
and hypoconnectedwith sensory regions in theCLBPgroup. This
shift suggests that individuals with CLBP may direct more
attention toward internal processes, such as managing chronic

pain, rather than external sensory inputs, but this assumption
needs to be verified with additional research.

4.2. Nucleus accumbens-prefrontal cortex connectivity in
animal models

Our findings indicate that the NAc was hyperconnected
exclusively with the PFC. Several of these connections were
significantly associated with higher CLBP intensity. The PFC is
important for executive functions such as cognitive control,
decision-making, and emotion regulation. The NAc facilitates
coordination between emotion, cognition, and action through
habit formation and procedural memory even in the absence of
direct rewards.9,12,17 In rodent models, dopaminergic NAc-PFC
pathways help align behavior with cognitive and emotional states
by filtering or amplifying motivational information.40 These circuits
show increased sensitization in neuropathic conditions, which
alters behavioral responses to rewards such as morphine.24 In

Figure 5. The connections that were significantly correlated with chronic pain intensity were assessed for reproducibility and accuracy for classifying between
CLBP and HC groups in the test data set (cohort 1) and in the validation data sets (cohorts 2 and 3). (A) The comparison of connections between HC (n5 41) and
the combined CLBP rest 1 and rest 2 groups (n 5 39 CLBP) representing the test data set. (B) The ROC curves revealed 4 of 6 connections to be moderate
predictors (AUC.0.7) of classifying between HCandCLBP. (C) The validation data set (n5 52CLBP and 54HC) showed partly reproducible differences between
groups in connections from the left shell and core to the right dlPFC. (D) The ROCcurve associatedwith the validation data set. All HC data and the validation CLBP
data were taken from a single resting-state scan (A). AUC, area under ROC curve; dlPFC, dorsolateral prefrontal cortex; dmPFCa, dorsal medial prefrontal cortex
anterior division; LC, left core; LS, left shell; ROC, receiver operator characteristic; RS, right shell. Significances: #P5 0.05, *P, 0.05, **P, 0.01, ***P, 0.001.
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addition, inhibiting PFC activity or its projections to the NAc
increases both sensory and affective components of acute pain in
rodent studies.60 Given the findings in animal models and the
results of previous human research, NAc-PFC hyperconnectivity
observed in CLBP patients likely reflects changes in motivational
and coping mechanisms related to chronic pain.

4.3. Nucleus accumbens-prefrontal cortex
hyperconnectivity and chronic low back
pain–related dysregulation

In humans, higher connectivity in theNAc-PFCpathway has been
shown to predict the development of CLBP from a subacute
stage.6,31 Nucleus accumbens-mPFC connectivity in people with
subacute back pain predicts the development of CLBP after 6
months.6 A recent study validated these earlier findings on the
role of NAc-mPFC connectivity, reporting that the process of
updating the value of reinforcements (ie, prediction error) in the
NAc predicts transition to chronicity.30 This finding indicates that
the prediction error–related uncertainty that ensues from pain
contributes to a rewiring of motivational circuitry, resulting in

altered behaviours in pain avoidance and fear of pain. The mPFC,
which is crucial for regulating reward-seeking behaviors,10,56 was
shown to activate significantly more in association with fluctua-
tions in back pain in the pain persistence group but not in those
that recovered.21

In our study, the NAc connectivity with mPFCwas not elevated
in people with longstanding CLBP, but instead showed hyper-
connectivity with the lateral PFC (dlPFC) and the medial PFC
(dmPFC). The lateral PFC is implicated in executive functions
such as working memory, decision-making, and cognitive
control, facilitating goal-directed behavior and managing external
information.1,19 The medial PFC is primarily associated with self-
referential processing and the DMN, engaging in tasks involving
introspection and personal relevance.19,28 The dmPFC, in
particular, plays a critical role in evaluating potential risks and
rewards and selecting appropriate actions based on these
evaluations,15,56 indicating that the NAc may be involved in
altered cognitive and motivational processes in CLBP. Notably,
the CLBP group showed stronger NAc-dlPFC synchrony, which
suggests an increased motivational drive for cognitive and
executive functions such as thinking and planning. In other

Figure 6. The 4 NAc connections with right dlPFC were assessed for reproducibility and accuracy in classifying between CLBP and HC in the test and validation
data sets. (A) Raincloud plot for the comparison of connections betweenHC (n5 41) and the combined CLBP rest 1 and rest 2 groups (n5 39CLBP). (B) The ROC
curves associated with the test data set (cohort 1). For all 4 connections combined in a logistic regressionmodel, the accuracy was 74%. (C) Raincloud plot for the
comparison of groups in the validation data set (cohort 2 and 3, n5 52CLBP and 54HC) showed reproducibility of the differences observed in the test data set. (D)
The ROC curve associated with the validation data set. For all 4 connections combined in a logistic regression model, the accuracy was 83%. HC data and
validation CLBP data were taken from a single resting-state scan (A). AUC, area under ROC curve; dlPFC, dorsolateral prefrontal cortex; LC, left core; RC, right
core; LS, left shell; RS, right shell; ROC, receiver operator characteristic.
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conditions such as major depression, decreased NAc-dlPFC
connectivity predicts higher depression scores and is associated
with substance use disorders.59 By contrast, NAc-dlPFC hyper-
connectivity predicted pain intensity, widespread pain, and
greater negative affect related to pain in CLBP patients. In
addition, NAc-dmPFCa connectivity predicted higher pain
catastrophizing and hypervigilance scores. These psychometric
scales are linked with counterproductive avoidance behaviors
that lead to disability.45,47,58 Given the established roles of the
NAc and dlPFC/dmPFCa in motivation and cognitive control,
these findings suggest that abnormal NAc-PFC connectivity may
underlie dysregulated motivation and cognitive processing that
become involved with persistent pain in CLBP patients. However,
because reward and motivation were not directly tested, any
interpretation of the findings based on the described roles of
these regions remains speculative.

The NAc-dmPFC also showed significantly increased func-
tional connectivity in CLBP relative to HC, but this finding was
more variable between study cohorts. The dlPFC and dmPFC
have strong connectivity with each other and work in tandemwith
the DMN to appraise and regulate emotion.35,49 For instance, the
dlPFC and dmPFC communicate in a sequential manner to
resolve cognitive conflict through cross-frequency coupling
between gamma and theta oscillations.51 Another study reported
that the dlPFC and dmPFC act as neural hubs to process
predictable and unpredictable threats, respectively.50 Together,
these findings indicate that different PFC subregions underpin
different stages of CLBP pathophysiology, and that altered PFC
synchronizations with the NAc contribute to maladaptive top-
down processing in CLBP.34

4.4. Reproducibility and methodological considerations

We further report reproducible differences in NAc-PFC connec-
tivity in 3 separate cohorts of participants using a standard
statistical approach and a ML-based approach. To test
generalizability, each cohort had different demographic param-
eters. One offsite cohort also had different acquisition and data
resolution parameters. Nucleus accumbens functional connec-
tivity was evaluated using atlas-based connectomics and mainly
with high temporal resolution fMRI data. We focused on
assessing the reproducibility of the connections that were
associated with clinical pain intensity after multiple comparison
corrections. We aimed to resolve study limitations, including
a check to assess whether the smoothing procedure used during
preprocessing reduced spatial resolution, thus making it difficult
to observe differences between shell and core connectivity
(Supplementary Table 2, available at http://links.lww.com/PAIN/
C271). We also used stringent motion correction procedures to
counter artifacts (see Methods). Because cohort 1 consisted of
CLBP data averaged from 2 scans, we also verified comparisons
of each resting-state scan acquired in CLBP participants

separately and observed reproducible results (Supplementary
Fig. 2, available at http://links.lww.com/PAIN/C271). These
analyses indicated that the main findings were reproducible
between the 2 scans acquired with the same participants on 2
separate days and hence were not state-dependent. However,
we acknowledge that across validation cohorts, the AUC values
were weak (,0.7; Figs. 5 and 6), suggesting limited discrimina-
tive power of individual features across cohorts. Another limitation
was significant age differences in the first cohort. To remedy this,
we used age and sex corrections (Supplementary Table 3,
available at http://links.lww.com/PAIN/C271) and checked the
reproducibility of the main findings in additional age- and sex-
matched data sets.

We believe our methods will be useful for developing improved
schemas on using statistical analyses to select knowledge-based
features for ML. By using existing evidence from classical studies,
we aim to improve these strategies and generate ML classifiers
that are based on mechanistic evidence and agent-based
predictors. Such domain knowledge-based predictors will lead
to ML-based classifiers that are informed by scientific evidence,
hypotheses, and statistical validation.

4.5. Implications and future directions

The concordance between our findings and studies on the
transition from acute to chronic back pain further verify that the
PFC network is abnormally synchronised with the NAc in CLBP.
However, the reliability of these findings depends on the stage of
chronic pain, demographics, and data quality. Our study
triangulates results from different cohorts to indicate that aberrant
NAc-PFC connectivity underpins longstanding CLBP and plays
a role in CLBP exacerbations. Our validation efforts demonstrate
that NAc-dlPFC rsFC can be reproduced in different cohorts and
should be explored further as a predictor for CLBP.
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Y. Cortical and thalamic interaction with amygdala-to-accumbens
synapses. J Neurosci 2020;40:7119–32.

[54] Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal
connectivity-based parcellation reveals a shell-core dichotomy of
the human nucleus accumbens. Hum Brain Mapp 2017;38:
3878–98.

[55] Xu Y, Goodacre R. On splitting training and validation set: a comparative
study of cross-validation, bootstrap and systematic sampling for
estimating the generalization performance of supervised learning.
J Anal Test 2018;2:249–62.

[56] Xue G, Lu Z, Levin IP, Weller JA, Li X, Bechara A. Functional dissociations
of risk and reward processing in the medial prefrontal cortex. Cereb
Cortex 2009;19:1019–27.

[57] Yan H, Shlobin NA, Jung Y, Zhang KK,Warsi N, Kulkarni AV, Ibrahim GM.
Nucleus accumbens: a systematic review of neural circuitry and clinical
studies in healthy and pathological states. J Neurosurg 2023;138:
337–46.

[58] Zale EL, Ditre JW. Pain-related fear, disability, and the fear-avoidance
model of chronic pain. Curr Opin Psychol 2015;5:24–30.

[59] Zhou B, Chen Y, Zheng R, Jiang Y, Li S, Wei Y, Zhang M, Gao X, Wen B,
Han S, Cheng J. Alterations of static and dynamic functional connectivity
of the nucleus accumbens in patients with major depressive disorder.
Front Psychiatry 2022;13:877417.

[60] Zhou H, Martinez E, Lin HH, Yang R, Dale JA, Liu K, Huang D, Wang J.
Inhibition of the prefrontal projection to the nucleus accumbens
enhances pain sensitivity and affect. Front Cell Neurosci 2018;12:
240.

Month 2025·Volume 00·Number 00 www.painjournalonline.com 15

www.painjournalonline.com


000 The nucleus accumbens-prefrontal connectivity as a predictor of chronic low
back pain
Chronic low back pain is associated with hyperconnectivity between the nucleus accumbens and
prefrontal cortex, a pattern that predicts pain intensity and was partly reproduced between different
study cohorts.
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