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Our sensory impressions of pain are generally thought to represent the noxious properties of an agent but can be influenced by the predicted level
of threat. Predictions can be sourced from higher-order cognitive processes, such as schemas, but the extent to which schemas can influence pain
perception relative to bottom-up sensory inputs and the underlying neural underpinnings of such a phenomenon are unclear. Here, we inves-
tigate how threat predictions generated from learning a cognitive schema lead to inaccurate sensory impressions of the pain stimulus. Healthy
male and female participants first detected a linear association between cue values and stimulus intensity and rated pain to reflect the linear
schemawhencomparedwithuncuedheatstimuli.Theeffectofbiasonpainratingswasreducedwhenpredictionerrors(PEs)increased,butpain
perception was only partially updated when measured against stepped increases in PEs. Cognitive, striatal, and sensory regions graded their
responses to changes in predicted threat despite the PEs (p � 0.05, corrected). Individuals with more catastrophic thinking about pain and with
low mindfulness were significantly more reliant on the schema than on the sensory evidence from the pain stimulus. These behavioral differ-
ences mapped to variability in responses of the striatum and ventromedial prefrontal cortex. Thus, this study demonstrates a significant role of
higher-order schemas in pain perception and indicates that pain perception is biased more toward predictions and less toward nociceptive
inputs in individuals who report less mindfulness and more fear of pain.
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Introduction
Pain is necessary for survival because it signals physical threats
and helps to reinforce aversive behaviors toward noxious stimuli

(Baliki et al., 2010; Zubieta, 2010; Seymour, 2019). Pain signals
are not only necessary for instantly responding to physical threats
but are also important for predicting the inherent harm in objects
or situations (Loeser and Treede, 2008; Wang et al., 2018). By
gauging pain intensity, our sensory systems learn how to appro-
priately infer potential harm and can generate appropriate
approach–withdraw decisions.

A prediction is a representation about a future event built on
prior experience and knowledge. Also referred to as expectations,
predictions are generated from memory and cued associations
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Significance Statement

This study demonstrates that threat predictions generated from cognitive schemas continue to influence pain perception despite
increasing prediction errors arising in pain pathways. Individuals first formed a cognitive schema of linearity in the relationship
between the cued threat value and the stimulus intensity. Subsequently, the linearity was reduced gradually, and participants
partially updated their evaluations of pain in relation to the stepped increases in prediction errors. Individuals who continued to
rate pain based more on the predicted threat than on changes in nociceptive inputs reported high pain catastrophizing and less
mindful-awareness scores. These two affects mapped to activity in the ventral and dorsal striatum, respectively. These findings
direct us to a significant role of top-down processes in pain perception.

The Journal of Neuroscience, Month XX, 2020 • 40(XX):XXXX–XXXX • 1

mailto:javeria.hashmi@dal.ca


(O’Doherty et al., 2017) and are of a higher order when generated
from abstracting associations based on logical rules (Wacongne
et al., 2011; Russek et al., 2017). In natural environments, where
sensory inputs are varied and uncertain, predictions are often
derived from information patterns that are hierarchical and com-
plex rather than simple or pavlovian (Egner and Summerfield,
2013; LeDoux and Daw, 2018). Mental constructs, referred to
here as cognitive schemas, can be defined as superordinate
knowledge built from multiple associations and cognitive rea-
soning (LeDoux and Daw, 2018). Schemas are higher-level
knowledge structures, such as ideas and concepts. A useful adap-
tation for conserving resources, schemas allow us to rapidly ex-
tract meaning from sensory inputs. Studies have shown the
influence of prior context on pain primarily with pavlovian con-
ditioning and placebo suggestion (Ashar et al., 2017; Hashmi,
2018), but models that can test effects of cognitive processes such
as logical reasoning in building top-down schemas of the rela-
tionship between cue and pain properties have not yet been
tested. Thus, the direct influence of higher-order predictions in
directing pain perception remains unclear.

Understanding how the brain responds when higher-order
predictions are incorrect is pertinent for understanding percep-
tual biases. When sensory evidence fails to confirm the predic-
tion, either the sensory evidence is ignored and, in turn, biases
perception, or the brain learns from the error and updates sub-
sequent predictions and evaluations to keep bias in check (Feld-
man and Friston, 2010; Rigoli et al., 2016). For higher-order
predictions, such as those based on an internal logic or a priori
mathematical reasoning, the influence on perceived pain may be
even more tenacious (Friston and Kiebel, 2009; LeDoux and
Daw, 2018; Weilnhammer et al., 2018). Previous studies have
demonstrated that the effect of expectations on pain is not fully
extinguished, even when prediction errors (PEs) of the same
magnitude are repeated (Schenk et al., 2017; Zunhammer et al.,
2018), but the effect of schema-induced bias and increases in
prediction errors has not yet been systematically tested.

Identifying brain systems that mediate effects of predictions
from threat schemas is necessary for understanding why people
perceive pain and respond to physical threats differently (Garrett
et al., 2018). Some individuals are more sensitive to predicted
threats (Karos et al., 2018), resulting in distorted pain experiences
(Boichat et al., 2018) and corresponding to a higher self-report of
pain catastrophizing (Elman and Borsook, 2018). In contrast,
higher bodily awareness (mindfulness) is said to be useful for
reducing the influence of maladaptive thought processes and can
relieve persistent pains (Harrison et al., 2019). Although mind-
fulness and catastrophizing are inversely linked, these two factors
may affect pain perception by altering predictive processes in the
brain.

Here, we investigate how pain ratings will deviate from a linear
schema when sensory evidence from bottom-up signals deviates
from a schema at increasing levels of prediction errors. The neu-
roimaging analysis was targeted at determining the extent to
which top-down cognitive and bottom-up sensory systems mod-
ulate their response, with changes in cued threat values and
prediction errors. In addition, we measured the influence of cata-
strophizing and mindfulness as factors that mediate perceptual
bias. We hypothesized that pain ratings deviate from the linear
schema when prediction errors from bottom-up pain pathways
increase, but the schema continues to influence pain ratings even
when the prediction error is at a maximum (max).

Materials and Methods
Study participants. Forty-two healthy participants (21 women; mean �
SD age, 31.23 � 10.91 years; age range, 20 –56 years) participated in the
study. Inclusion criteria for healthy participants were as follows: (1) be-
tween 18 and 75 years of age, and (2) right handed. Participants were
excluded if they (1) had concomitant acute or chronic pain; (2) were
taking medications for pain; (3) were pregnant; (4) had a history of
cardiac, respiratory, or nervous system disease that may interfere with
participation in the study or potential for adverse outcome (e.g., asthma
or psychiatric or mental disorders); or (5) had contraindications to MRI
scanning [e.g., cardiac pacemaker, metal implants (including titanium),
dental braces, permanent retainers, or known fear of closed spaces]. The
study protocol was approved by the Nova Scotia Health Authority Re-
search Ethics Board. All participants provided written informed consent
before participation in the study. Analysis of behavioral data was con-
ducted based on all 42 participants, but complete fMRI data could not be
collected for four participants and were excluded from analysis.

Thermal pain stimulation. Painful heat stimuli were delivered to the
skin on the left lower leg (tibialis anterior muscle) using an ATS 30 � 30
mm thermode (PATHWAY system, Medoc). Before the MRI scan, heat
pain thresholds and tolerance were measured through an ascending heat
stimulus using the method of limits. The temperature was slowly in-
creased from a neutral baseline (35°C) at a rate of 1°/s. The participant
pressed a button to terminate the stimulus as soon as they detected pain
to measure pain threshold or as soon as the evoked pain was intolerable
to measure pain tolerance. All thresholds were measured three times and
averaged for further analysis. During the fMRI scan, the stimulation
started at a baseline temperature of 35°C. The temperature change rate
both from the baseline to destination and from destination back to base-
line was 4°C/s. Each stimulus was presented for 8 s, including the period
of temperature change. In this study, we defined a temperature of 45°C as
a low-intensity stimulus and a temperature of 47°C as a high-intensity
stimulus. Plateau durations for high-intensity (47°C) and low-intensity
(45°C) stimuli were 2 and 3 s, respectively. After heat stimulation, par-
ticipants rated perceived pain based on a 0 –100 numerical rating scale
(NRS; 0 � no pain as the left visual anchor points, 100 � worst pain
imaginable as the right visual anchor points). Participants moved the
cursor on the scale to select a number representing their pain by pressing
two buttons on an MRI-compatible response pad (Lumina LSC-400 con-
troller, Cedrus) under their right hands (Fig. 1A).

Experimental task. This model was developed as a cognitive test of bias
to evaluate the influence of predictions relative to new sensory evidence
at both a group and an individual level. This task measures the influence
of change in bottom-up sensory evidence in countering the effects of
predictions from the schema on pain ratings at increasing ranges of pre-
diction errors (Fig. 1C). Instead of the commonly used pavlovian cues
and explicit conditioning (Atlas and Wager, 2012; Roy et al., 2014; Wiech
et al., 2014; Geuter et al., 2017; Tinnermann et al., 2017; Wang et al.,
2018), participants detected the implicit linear association where cue
values matched the stimuli, without explicit instructions (Fig. 1 A, B).
The cues stated the intensity of incoming stimuli with a number, where
every change in value created anticipatory states of corresponding change
in the threat of experiencing intense pain. To establish the effects of
learning the schema on perceived pain, pain ratings and neural activation
in response to uncued stimuli (Fig. 1D) were measured at baseline and
compared with response to cue-matched stimuli (Fig. 1B). Prediction
errors were added by altering stimulus ratings at increasing ranges of
prediction errors, and any update in pain ratings was quantified.

Task details. Participants were told that they would be shown informa-
tion on a screen, experience heat pain, and be asked to rate the experi-
enced pain intensity on a scale. Participants were familiarized with visual
and heat stimuli and trained to provide pain ratings.

Experimental conditions were distributed over four runs containing
epochs consisting of presentations of a visual cue, heat pain stimuli, and
pain-rating events. Thus, in each epoch, the duration of the visual cue
was 4.75 s (Fig. 1A). After a delay of 1.9 s (black screen with white fixation
cross), the heat pain stimulus was administered while participants viewed
a red fixation cross. The duration of the heat stimulus was 8 s. After a
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delay of 4.75 s (black screen with white fixation cross), the NRS was
displayed on the screen for 6 s, and participants rated the intensity of
experienced pain by moving a cursor along the scale. The interepoch
interval ranged from 2.85 to 8.55 s. Before the MRI scan, participants
filled out questionnaires, and their responses to low-intensity (45°C) and
high-intensity (47°C) stimuli were quantified at baseline to test how
participants evaluated the pain stimuli when the cues did not contain
information about stimulus intensity. Either 45°C or 47°C heat stimuli
were delivered to participants, but the visual cues stated that “the incom-
ing heat stimulus is at x% intensity.” Stimuli (45°C and 47°C) with no cue
value were repeated three times.

All participants underwent structural and resting-state fMRI scans
first, followed by the pain tasks with fMRI acquisitions. Task runs con-
sisted of one matched condition run (Fig. 1B), one Mismatched Level 1
condition run, and two Mismatched Level 2 condition runs (Fig. 1C). In
the Matched condition, the stimulus temperature was linearly increased
with the cued threat values. The visual cues stated that “the incoming
heat stimulus is at x% intensity.” The value of x varied between 1 and 100
with increments of 10 points (e.g., 1–10%, 31– 40%). Each 10-point in-
crease in cued threat value was associated with a 0.4° increase in stimulus
temperature (temperature range, 43.8 – 47°C). Thus, during the matched
condition, participants learned to predict the pain intensity from the
cued threat value. The order of each epoch was pseudorandomized, and
a total of 24 epochs were presented.

The remaining of three runs consisted of trials containing prediction
errors (Fig. 1C). Thus, after the first matched condition run, in the sec-
ond run (Mismatched Level 1 condition), cue values selected from a
range of 1– 40% were coupled with low-heat (45°C) stimuli, and cue
values selected from a range of 61–100% were coupled with high-heat
(47°C) stimuli. Thus, the difference between expected and actual tem-
perature increased linearly for the cue ranges of 1– 40% and 61–100%
between 0°C and 1.2°C. There was no prediction error for cue ranges of
31– 40% and 91–100%.

In the third and fourth runs (Mismatched Level 2 condition), cue
values were selected from a range of 1– 40% and were again coupled with
45°C stimuli to introduce a low range of prediction errors; however, cue
values ranging from 1 to 100% were paired with 47°C stimuli. The latter
pairing introduced a higher range of prediction errors (0 –3.2°C) and
there was no prediction error for cues between 91 and 100. In addition, in
22 trials, 45°C and 47°C stimulus intensities were paired with cues that
stated “the incoming heat stimulus intensity is unknown” at baseline and
interspersed between Level 1 and Level 2 mismatched trials (Fig. 1D).
Visual presentation and behavioral data collection were controlled
through Presentation software (Neurobehavioral Systems). The order of
epochs was pseudorandomized, and a total of 42 epochs were presented
in runs 2– 4. Data for the baseline responses and first run were collected
in the scanner in only 20 participants, and the scans were not used in the
analysis.

fMRI data acquisition. Structural and functional data were collected on
a 3.0 T MRI scanner (Discovery MR750, GE Healthcare) at the Halifax
Infirmary site of the Queen Elizabeth II Health Sciences Centre. A T1-
weighted brain image (inversion recovery fast spoiled gradient recalled
sequence (FPSGR)) was acquired using the following parameters: field of
view � 224 � 224 mm; in-plane resolution � 1 � 1 mm; slice thick-
ness � 1.0 mm; TR/TE � 4.4/1.908 ms; flip angle � 9°. fMRI data were
acquired using a multiband EPI sequence: field of view � 216 � 216 mm;
in-plane resolution � 3 � 3 mm; slice thickness � 3.0 mm; TR/TE �
950/30 ms. Total number of volumes was 814 for the first matched func-
tional scan and 624 for the three other functional runs. Four volumes of
reverse-phase-encoded multiband EPI were also acquired before the
resting-state scan. Each participant’s head was fitted with foam padding
to minimize head movement, and ear plugs were provided to reduce
scanner noise. Participants were reminded to keep their head as still as
possible before each scan.

Behavioral data analysis. Questionnaires were administered before the
experimental trials. Pain catastrophizing was assessed with the pain cata-
strophizing scale (Sullivan et al., 1995), and mindfulness was assessed
using the 39-item Five Facet Mindfulness Questionnaire (Baer et al.,
2006). The Spielberger Trait Anxiety Inventory (STAI) was used to assess
anxiety (Spielberger, 1983). For evaluating pain sensitivity, we used the
method of limits to obtain three observations of thermal pain thresholds
and thermal pain tolerance and used the averaged values in analyses
(Defrin et al., 2006). Behavioral data were analyzed using SPSS 24 (IBM).

Behavioral analysis was based on a repeated-measures ANOVA with
cue values as predictors and pain ratings as dependent variables. All
effects that met the criteria of p � 0.05 (two-tailed) were considered
significant.

Neuroimaging data analysis. Field map-based distortion correction
was performed for all functional datasets. Three mismatched fMRI data-
sets were preprocessed with the FMRIB Software Library (FSL; http://
www.fmrib.ox.ac.uk/fsl) and Analysis of Functional NeuroImages
(AFNI; http://afni.nimh.nih.gov/afni), with the scripts provided by the
1000 Functional Connectomes Project (http://www.nitrc.org/projects/
fcon_1000; Biswal et al., 2010). Preprocessing using AFNI consisted of
(1) discarding the first five EPI volumes to allow for signal equilibration,
(2) motion correction of time series by aligning each volume to the mean
image using Fourier interpolation, (3) skull stripping, and (4) getting an
eighth image for use in registration. Next, preprocessing using FSL con-
sisted of (1) spatial smoothing using a Gaussian kernel of full-width at
half-maximum � 6 mm, (2) grand-mean scaling of the voxel value, (3)
temporal filtering (0.005– 0.3 Hz), (4) removing linear and quadratic
trends, and (5) removing nine nuisance signals (global mean, CSF, white
matter, six motion parameters) by regression.

For each participant, time series statistical analysis was performed
using the FMRIB Improved Linear Model. For first-level analysis, the
heat stimulation with 47°C duration for cue ranges: 1–20%, 21– 40%,

Figure 1. Schematic representation of the experimental paradigm. A, In each epoch, predictive cues were shown before a heat pain stimulus followed by a prompt for a pain rating on a 0 –100
numerical rating scale. The tested condition changed from epoch to epoch, and the order of the cued threat values and heat stimulus temperature was changed in a pseudorandom order. B, Matched
condition: the predictive cue values drawn from numbers between 1 and 100, where each 10-point increase in cue value was associated with a 0.4° increase in stimulus temperature as shown. Thus,
predictive cue values increased in direct relation with the stimulus intensity. C, Mismatched condition: PEs (difference between expected and actual temperatures) were introduced in two steps. In
the first series of trials (Mismatched Level 1), cues ranging between 1 and 40 were paired with 45°C, and those between 61 and 100 were paired with 47°C, resulting in a range of PEs between 0°C
and 1.2°C. In the second series (Mismatched Level 2), a higher range of prediction errors was added by pairing the lower range of cues (1– 40) with 47°C, resulting in a range of PEs between 0 and
3.2°C for the 47°C stimuli. B, C, The gray lines represent the expected response curve for the matched condition as a reference to the linear schema. D, Responses to 45°C and 47°C heat stimuli were
quantified before the experiment and during the mismatched runs. Thus, no cue value was shown, and the visual cue indicated that the stimulus intensity is unknown.
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61– 80%, and 91–100% (1–20%) was convolved with a canonical hemo-
dynamic response function (gamma function: mean � SD lag, 6 � 3 s).
Temporal derivatives of the events were added to the model. Each par-
ticipant’s contrast images of parameter estimates were then transformed
to standard space (2 � 2 � 2 mm 3 resolution; 152 template, Montreal
Neurological Institute) using the FMRIB Linear Image Registration Tool.
First, functional images were aligned to the structural image with 6 de-
grees of freedom affine transformation. Then, the structural image was
aligned to standard space with a 12 degree of freedom affine transforma-
tion. Finally, the resulting transformation matrix was applied to each
participant’s statistical data. A second-level analysis was performed to
combine all three functional runs for individual participants using a
fixed-effects model. Higher-level analysis was performed using the FM-
RIB Local Analysis of Mixed Effects (FLAME 1). To increase the number
of observations, epochs of 47°C heat stimuli paired with a cue range of
1–20 (prediction error of 0°C) and 47°C paired with a cue range of
91–100 (prediction error range of 2.8 –3.2°C) were contrasted with each
other. Multiple-comparison corrections were performed using Gaussian
random field theory (minimum Z � 2.3; cluster level, p � 0.05).

Results
Pain perception is influenced by threat predictions
As expected, baseline ratings for two different heat temperatures
observed before schema-cue induction were significantly dif-
ferent (31.51 � 3.6 SEM for 45°C and 48.78 � 5.53 SEM for
47°C; difference � 17.27 on NRS, T � 391, p � 0.016, t test
rank sum). In the subsequent matched condition, where the
cues linearly predicted the stimulus intensity, the response curve
of pain ratings showed a linear pattern, confirming that partici-
pants correctly detected the implicit rule (Fig. 2A).

The extent to which pain perceived from 45°C differed from
47°C was significantly higher for the cued stimuli (paired with
31– 40 and 91–100, respectively) relative to uncued baseline re-
sponses (T � 456, p � 0.001; Fig. 2B), demonstrating that pain
perception was altered to be more aligned with the linear increase
in cued threat values than simple, bottom-up temperature
effects.

Sensory evidence had lower contribution to pain perception
relative to threat predictions from the linear schema
To challenge the schema, in the first set of stimuli, a low range of
prediction errors was introduced (Mismatched Level 1). The

stimulus temperature diverged from the predicted threat value at
a range from 0°C to 1.2°C. The extent to which pain ratings were
updated from the matched condition by the prediction errors was
small but significant. Two-way repeated-measure ANOVA
(matched vs unmatched conditions � cued threats at eight levels)
revealed a significant main effect (Matched vs Unmatched Level 1
temperature � linear cued threat: F(1,285) � 8.442, p � 0.001).
Although the effect of cues was significant (1–10, 11–20, 21–30,
31– 40, 61–70, 71– 80, 91–100; F(7,287) � 141.86, p � 0.001), the
effect of matched versus unmatched temperature was not signif-
icant (F(7,41) � 0.085, p � 0.771). Post hoc analysis showed that
the mean pain intensity was significantly updated for some but
not all cue conditions (Fig. 3).

For Mismatched Level 2, cued threats ranged between 1 and
100, but heat stimuli were held at a single intensity of 47°C (Figs.
1, 4A; Mismatched Condition Level 2). Two-way repeated-
measure ANOVA (matched vs unmatched conditions � cued
threats at eight levels) revealed a significant main effect (matched
vs unmatched temperature � linear cued threat: F(1,285) � 17.62,
p � 0.001). The effect of cues (1–10, 11–20, 21–30, 31– 40, 61–70,
71– 80, 81–90, 91–100; F(7,287) � 124.44, p � 0.001) and the effect
of matched versus unmatched temperature were also significant
(F(7,41) � 18.43, p � 0.001). Post hoc analysis showed that the
mean pain intensity was significantly greater for five of eight cue
ranges than the matched condition (Fig. 4A).

This effect of bias in pain perception was evaluated as the
difference in perceived pain with increase in stimulus strength
between the 0 PE and max PE within the Mismatched Level 2
condition, which showed a significant difference (T � 1160.5,
p � 0.001, Mann–Whitney U test, Cohen’s d � 1.608; Fig. 4B). In
addition, update in pain ratings was quantified by measuring the
change in bias with increase in PEs between the unmatched and
matched conditions (Fig. 4C). This was quantified by first esti-
mating the difference in pain intensity at different levels of PE
relative to no PE within the mismatched condition and then cal-
culating the percentage change of these values relative to differ-
ences for the same cues in the matched condition. The linear
increase in magnitude of prediction errors resulted in an incre-
menting update and reduction in bias (Fig. 4C). The maximum
value of update was at a mean of 27 � 3.15 SEM.

Figure 2. The linear schema altered pain perception for cued relative to uncued heat stimuli.
A, Mean pain ratings sorted based on cued threat values demonstrate that the values linearized
the evaluations of pain. Cyan dots represent mean pain rating observed at baseline in response
to pseudorandom repetitions of uncued stimuli of 45°C and 47°C. B, Difference in pain intensity
between responses to 45°C and 47°C stimuli presented without cued (cyan bar) or with cued
threat values (31– 40 and 91–100, gray bar). Data are expressed as the mean � SEM.
*p � 0.05.

Figure 3. Effects of prediction errors in schema on pain responses for Mismatched Level 1.
The pain response curve for mismatched cue values and heat stimuli. Cues ranging between 1
and 40 were paired with 45°C, and those ranging between 61 and 100 were paired with 47°C,
resulting in a range of PEs between 0°C and 1.2°C. The gray line represents the response curve
for the matched condition. Data are expressed as the mean � SEM. *p � 0.05.
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The brain systems that mediate perceptual bias showed
graded change in activity corresponding to the level of cued
threat and prediction error
When the heat stimulus was held at 47°C, several brain regions
modulated their activity in relation with changes in cue temper-
ature values. fMRI responses to heat stimuli were significantly
different when predicted temperature was low (1–20) and PE
from heat stimulus was at its max (2.8 –3.2°C) relative to high
cued threat (91–100) and no PE (FLAME 1, corrected at p � 0.05;
Fig. 5).

The regions that showed reduced activation in response to
heat stimuli when cued threat was low and PE was at the maxi-
mum range were observed primarily in sensory areas, such as the
secondary somatosensory cortex (S2), dorsal posterior insula
(dpINS), middle insula (mINS; data not shown), putamen, nu-
cleus cuneiformis/periaqueductal gray area (NCF/PAG) extend-
ing into the amygdala, and hippocampus in the left hemisphere
(Fig. 5A; Table 1). In contrast, the brain regions that showed
increased activation were mostly those that are related to cogni-
tive processes: left dorsolateral prefrontal cortex (dlPFC), left in-
ferior parietal lobule/supramarginal gyrus (SMG), left lateral
orbitofrontal cortex (lOFC), ventrolateral prefrontal cortex
(vlPFC), and right ventromedial prefrontal cortex (vmPFC; Fig.
5B; Table 1). The observed effects in cognitive and sensory sys-
tems may reflect the top-down cognitive influence of prior infor-
mation on pain perception and the regions important for
perceptual processing of pain and learning from prediction er-
rors in nociceptive inputs.

Next, for each identified region in the cognitive and sensory
network, brain activation (parameter estimates) was extracted for
events at four levels of prediction errors (0°C, 0.8 –1.2°C, 2.0 –
2.4°C, and 2.8 –3.2°C). When responses were ranked based on
ascending cue values, most regions showed a graded response
that corresponded with predictive values even though the stimu-
lus was held at a single temperature of 47°C. All regions tracked
the linear schema, and this effect was most prominent for left
putamen and left dlPFC as shown in Figure 5, C and D.

Effect of linear schema on pain responses to uncued (schema-
free) stimuli presented during mismatched trials
One-way repeated-measure ANOVA showed a significant main
effect on pain responses of cued versus uncued conditions
(ANOVA on ranks, H � 37.89, p � 0.001) for the 47°C stimuli
(Fig. 6A). Thus, pain responses to uncued stimuli were different
from cued stimuli with max PE (difference of ranks � 1403, q �
5.92, p � 0.05, 47°C) but not different from cued stimuli with no
PE (difference of ranks � 605, q � 2.55, p � 0.05, 47°C). Thus,
47°C continued to be identified as more painful when there were
no explicit cued threats predicting the stimulus strength, and this
evaluation relied on bottom-up nociceptive signals received di-
rectly from the stimulus. But when the same intensity was paired
with cues that signaled low threat, the evaluated pain was prom-
inently reduced.

Furthermore, the contrast between uncued stimulus intensi-
ties became linear during the mismatched condition. The differ-
ence in pain ratings between the uncued stimuli (45°C vs 47°C)
was significantly higher (T � 528, p � 0.008) during the mis-
matched trials (mean � SEM, 27.61 � 2.45) relative to baseline
(mean � SEM, 17.267 � 2.93). Thus, responses to cued threat
values and to uncued stimuli were both affected by the linear
schema (figure not shown).

Schema-related versus schema-free heat pain stimuli activate
different brain networks
Next, we identified regions that mediate cued threat-based pain
perception relative to regions that mediate pain perception based
primarily on the evoking stimulus. Activations in response to
47°C heat stimuli paired with matched cued threat values (91–
100; 0 PE) were contrasted with 47°C heat stimuli presented with-
out cue values (whole-brain-corrected p � 0.05, FLAME 1).
Activations in response to cued heat stimuli were significantly
greater in the right dlPFC, right and left frontopolar PFC (Brod-
mann area 10), and right dorsal anterior cingulate cortex (ACC;
Fig. 6B; Table 2). In the absence of cued threat values, the 47°C

Figure 4. Effects of prediction errors in threat schema on pain responses. A, The pain response curve for mismatched cued threat and heat stimuli. Cued threat values were selected from a range
of 1–100, but the preceding stimulus was consistently at 47°C, resulting in a range of prediction errors (0 –3.2°C). The gray line represents response curve for matched condition. B, The pain ratings
for the 0 PE versus the max PE were significantly different. The difference demonstrates a strong effect of cued threats on pain intensity for the same stimulus intensity and is taken to represent
perceptual bias. Data are expressed as the mean � SEM. *p � 0.05. C, The reduction in influence of cued threats on pain intensity by the change in sensory evidence is taken to represent an update.
Pie charts show the mean percentage of ratings that were updated with change in sensory update relative to the expectation-induced bias in pain ratings. Scatter plots overlaid on box plots show
an update in pain ratings for different levels of PEs.
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stimulus evoked significantly greater activity in the left frontal,
and visual cortex (Fig. 6C, Table 2).

The right and left nucleus accumbens, intraparietal lobule,
dorsomedial PFC, OFC, and dlPFC activated when the level of
threat was low relative to absence of cue values (i.e., 1–20 vs no
cues; Fig. 6D). In the opposite contrast (Fig. 6E), absence of cues
was related to greater activations in sensory regions, including
parietal cortex, visual cortex, and somatosensory area 1 (leg re-
gion ipsilateral to heat stimulus).

Individual differences in perceptual bias are linked with
striatal circuitry, catastrophizing, and sensory awareness
To understand why some individuals are more affected by threat
predictions, we quantified bias for individuals as the difference in
pain ratings evoked by the 47°C stimuli when they were paired
with cue values of 91–100 (no PE) compared with 1–20 (max PE).

The mean extent of bias measured as the absolute difference be-
tween the lowest (0°C) and highest (2.8 –3.2°C) prediction error
was 37.1 � 3.6 (mean � SEM), and the range was between 3.3
and 70 (mean absolute difference in NRS). On investigating
factors that mediate individual differences, bias was observed
to be significantly higher in individuals who reported lower
mindfulness on the Five Facet Mindfulness Questionnaire
(Fig. 7). Of the 10 brain regions that showed a significant
change in activation to heat stimuli between the 0 versus max
PE condition, the putamen was observed to significantly cor-
relate positively with mindfulness scores (Fig. 7B) and nega-
tively with bias (Fig. 7C).

To measure the role of threat sensitivity, self-reported pain
catastrophization, anxiety and pain sensitivity measures (pain
threshold and pain tolerance) were used to predict the variability
in perceptual bias. A higher score on pain catastrophizing was

Figure 5. Cognitive, striatal, and sensory brain regions mediate perceptual bias. A, B, Contrasts between high cued threat (91–100) at no PE relative to low cued threat (1–20) and high PE
(2.8 –3.2°C). Heat stimulus intensity was constant at 47°C. C, D, Identified regions show graded change in relation to changes in cued threats. Parameter estimates were extracted from a 6 mm
sphere around the peak voxels of activation at different levels of cued threats/PEs. A 3 mm sphere was used for PAG.

Table 1. Comparison of brain activation during heat pain stimuli (47°C) paired with 1–20 (max PE) and 91–100 cue values (no PE)

Contrast Brain region Peak coordinate (x, y, z) Z value Number of voxels

Max PE (1–20) � no PE (91–100) Left lateral orbitofrontal cortex �38, 36, �8 3.02 40
Left ventrolateral prefrontal cortex �50, 44, �2 3.24 202
Left dorsolateral prefrontal cortex �50, 30, 28 4.04 428
Left supramarginal gyrus �32, �50, 34 3.77 977
Right ventromedial prefrontal cortex/medial orbitofrontal cortex 18, 46, �20 3.92 469

No PE (91–100) � max PE (1–20) Left secondary somatosensory cortex/dorsal posterior insula �42, �24, 18 4.00 527
Left putamen �34, �8, �2 3.95 170
Left parahippocampal gyrus �18, �28, �12 3.81 32
Left nucleus cuneiformis/amygdala �12, �28, �14 4.09 67
Right lingual gyrus 8, �78, 0 3.91 506
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linked with stronger bias toward cued threat values (r � 0.410,
p � 0.008, Fig. 8A). Moreover, higher perceptual bias signifi-
cantly predicted lower pain tolerance (r � �0.372, p � 0.0169,
Fig. 8B) but did not predict pain thresholds (r � 0.201, p �
0.207). Other tested factors that were not significantly related were
age, sex, and anxiety scores (p � 0.05). For this analysis, we mea-
sured the difference in responses of accumbens and vmPFC between
states of no PE and max PE. The accumbens showed a small but
significant increase and the vmPFC decreased in responsiveness (Fig.
5) with increase in PE. The extent of change in activations of the
vmPFC and accumbens were observed to significantly correlate with
pain catastrophizing (Fig. 8C and D). Perceptual bias was signifi-
cantly linked with change in accumbens (r � 0.363, p � 0.025) and

marginally linked with change in vmPFC (r � 0.285, p � 0.088)
responses to PE.

Discussion
This study demonstrates that threat predictions generated from
cognitive schemas continue to influence pain perception despite
increasing prediction errors arising from the sensory evidence in
pain pathways. Perceptual bias was significantly reduced with
every increase in prediction error but could not be fully corrected,
even when the prediction error was at its highest (effect size for
difference in no PE and max PE � 1.608). Overall, these obser-
vations extend and complement model-based studies in showing

Figure 6. Comparisons between un-cued (schema-free) versus cued stimuli (schema-related) responses to heat stimuli. A, The pain intensity evoked by 47°C stimuli was similar between the
schema-related (cued) and schema-free (uncued) condition when the cues had no PE, but the evaluations of cued stimuli were significantly lower when cued threat was low (max PE). B, The contrast
between 0 PE and the no cue condition showed significantly more activations in the right dorsolateral, right and left dorsomedial and frontopolar prefrontal cortex, and right dorsal ACC than uncued
heat stimuli. Note that heat stimulus intensity was 47°C in both conditions. C, The opposite contrast (no cue relative to cued condition) showed activation in the left dorsolateral prefrontal cortex and
visual cortex. D, Heat stimuli paired with cue values of 1–20 activated several regions when contrasted against uncued heat stimuli: right and left nucleus accumbens, intraparietal lobule, subgenual
ACC, dorsomedial PFC, orbitofrontal cortex, and dorsolateral PFC. Heat stimulus intensity was 47°C in both conditions, and the cue values predicted the stimulus intensity to be 2.8 –3.2°C less than
the actual stimulus intensity (i.e., max PE). E, The opposite contrast showed activation in the sensory regions, including the parietal cortex, visual cortex, and somatosensory area 1 (leg region
ipsilateral to heat stimulus).

Table 2. Comparison of brain activation during predictable (cued) and unpredictable (uncued) heat pain stimuli (47°C)

Contrast Brain region Peak coordinate (x, y, z) Z value Number of voxels

Matched cues (0 PE) � no cues Left medial prefrontal cortex �14, 60, 0 3.62 422
Right dorsolateral prefrontal cortex 20, 28, 40 4.15 869
Right dorsal anterior cingulate cortex 14, 46, 22 3.44 344
Right medial prefrontal cortex 8, 62, �4 3.22 53

No cues � matched cues (0 PE) Left dorsolateral prefrontal cortex �38, 52, 74 4.49 516
Right cuneus 6, �78, 20 3.61 392

Unmatched cues at max PE � no cues Left inferior/superior parietal lobule �32, �52, 34 4.24 962
Left and right dorsomedial prefrontal cortex �6, 22, 42 3.89 445
Left nucleus accumbens/caudate �6, 8, �6 3.40 146
Right dorsolateral prefrontal cortex 46, 16, 44 4.28 533
Right inferior/superior parietal lobule 44, �56, 42 4.57 1190
Right nucleus accumbens/caudate 12, 10, �4 3.57 272
Right orbitofrontal cortex 20, 44, �18 4.24 556

No cues � unmatched cues at max PE Left and right postcentral gyrus 0, �38, 66 3.8 747
Left postcentral gyrus �40, �30, 50 3.81 661
Right occipital pole 12, �94, �12 3.32 615
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a mechanistic role of predictions in influ-
encing pain perception (Büchel et al.,
2014; Anchisi and Zanon, 2015).

Previous studies have investigated
whether expectations formed by condi-
tioning can modulate pain with relatively
simple tasks and pavlovian cues (Atlas and
Wager, 2012; Roy et al., 2014; Wiech et al.,
2014; Geuter et al., 2017; Tinnermann et
al., 2017; Wang et al., 2018). This study
complements previous findings and ex-
tends them by showing that an increase in
prediction errors is ignored in uncertain
conditions that require difficult mental
transformations of information (Sharot et
al., 2007; Hohwy, 2017; Sarafyazd and
Jazayeri, 2019). For complex tasks, with
varied inputs, bias acts as a compensation
mechanism for dealing with uncertainty.
This study offers empirical evidence for
the influence of learning and inference on
pain intensity and offers new insights into
the nature of pain as a signal for detecting
and evaluating threats. The role of threat
detection in biasing pain perception has
been suggested, and there is a need to re-
evaluate classical assumptions of pain as a
bottom-up system for representing prop-
erties of noxious stimuli (Craig, 2003;
Hashmi, 2018). Through this research, a
new understanding of pain is emerging to
review the role of pain as a learning signal
that reinforces aversions to threats in ad-
dition to signaling actual or potential tis-
sue damage (Davis et al., 2015; Wiech, 2016; Apkarian, 2019;
Seymour, 2019). Pain enables an important ability in organisms
to learn contingencies related to punishing experiences and adap-
tively guides actions on safely exploring the environment and
preventing harm (Daw and Doya, 2006; Donoso et al., 2014;
LeDoux and Daw, 2018).

Changes in the levels of cued threats altered activity in cogni-
tive and sensory/subcortical networks in a graded and opposite
manner, and this observation underscores a role of these respec-

tive top-down and bottom-up systems in biasing pain percep-
tion. The striatal and prefrontal circuitry are centrally involved in
adapting behavior to changing contingencies (Diuk et al., 2013;
Donoso et al., 2014; Wilson et al., 2014; Niv et al., 2015). These
observations direct us to the known role of these regions in con-
trolling attention (Leong et al., 2017), maintaining task set in
working memory (Momennejad et al., 2018; Rouhani et al.,
2018), evaluating choices (Wang et al., 2018; Ardid et al., 2019),
and confidence (Ma and Jazayeri, 2014) while monitoring sen-

Figure 7. Low mindful awareness and reduced putamen responsiveness to cues are involved in perceptual bias. A, Participants with a higher level of perceptual bias (difference in pain ratings
evoked in response to 47°C paired with cue values of 91–100 and 1–20) reported lower scores on mindful awareness measured with the Five Facet Mindfulness Questionnaire (FFMQ). B, At the group
level, putamen activation was decreased by the low cue values (1–20; Fig. 5), but at the individual level, the putamen response to heat decreased relatively less in individuals who scored lower on
the mindfulness questionnaire. C, This effect was also observed in individuals who reported greater perceptual bias.

Figure 8. High catastrophizing and reduced activity of vmPFC are involved in perceptual bias. A, B, Higher perceptual bias
toward cued threats was related to higher pain catastrophizing (A) and lower heat pain tolerance (B). C, D, Reward circuitry
responses to PEs were affected by pain catastrophizing. C, Decrease in vmPFC responses with increase in PE was greater in
individuals with high pain catastrophizing. D, Increase in accumbens responses with increase in PE was lower in individuals with
high pain catastrophizing.
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sory evidence arising from the bottom-up pathways of other sen-
sory modalities, such as visual information (Pessoa et al., 2003).
The top-down influence on the perceptual experience of pain
observed in this study defines the function of these top-down
systems in predicting and evaluating physical threats (Wager et
al., 2004; Tinnermann et al., 2017; Seymour, 2019) and signifies
that these systems engage in processing cues from all sensory
modalities to enable threat detection to adjust pain experience
and behavior (LeDoux and Daw, 2018). Moreover, the graded
effect of cues on activation in these regions demonstrates the
extent to which responses of these regions can become entrained
by changing magnitudes of predicted threat. These sets of systems
are reported to maintain the status quo putatively by biasing
attention and working memory toward predictions and exploit-
ing previously learned strategy of the matched condition (Sara-
fyazd and Jazayeri, 2019).

In contrast, regions that are widely implicated for their role in
pain perception, threat detection, and fear conditioning, such as
S2, posterior insula, and PAG/NCF/amygdala (Leknes et al.,
2013; Roy et al., 2014; Davis et al., 2015; Sprenger et al., 2015;
Berret et al., 2019), were responsive to increases in the extent of
cued threat. The dorsal striatum and hippocampus also showed a
similar pattern, demonstrating their role in the learning and pro-
cessing of prediction errors, as has been suggested previously
(Wang et al., 2018; Iigaya and O’Doherty, 2019; Pauli et al., 2019).
Activations observed in the vmPFC region increased in relation
to increase in prediction errors, further confirming its role in
signaling expected value and aversive learning (Roy et al., 2012;
Juechems et al., 2019). Relative to activation patterns in response
to cued threats, the uncued stimuli activated sensory regions,
including the leg area on the hemisphere contralateral to the site
of heat stimulation, indicating increased monitoring of inputs
from bottom-up pathways (Fardo et al., 2017).

Some important distinctions were observed from the variabil-
ity between participants in the extent to which their pain reports
could be biased by cued threats. This variability may be due to the
extent to which they updated their pain responses based on
changes in bottom-up sensory evidence. Another factor behind
this variability is related to how participants varied in learning the
rule during the first (matched) condition. For instance, high-bias
individuals may have also been biased toward the cue values while
learning the schema, resulting in more proficient learning of the
implicit linear schema, or due to greater responsiveness to the
encoded level of threat. Although the two factors (bias caused by
adept learning vs. perseverance of learning) are entangled, the
variability can be taken to represent how some individuals are
more biased by the threat represented by the cues and hence show
more reliance on schemas and less update when prediction errors
are presented. Self-reported catastrophizing toward pain was
higher and pain tolerance was lower in individuals who were
influenced more by cued threat values than by the sensory evi-
dence. The phenomenon was linked with responses of the
vmPFC region and accumbens, where the former region showed
less and the latter showed more change in responses with reduc-
tion in cued threat values in pain catastrophizers. This pattern of
activity may be linked with mediating learning from prediction
errors in schema or model-based predictions (Niv et al., 2012).
The vmPFC region plays a central role in regulating negative
emotions and representing value in decisions involving rewards
and punishment under conditions of risk and ambiguities and is
important for reversing contingencies (Roy et al., 2012; Mc-
Namee et al., 2013; Dunsmoor et al., 2019). This finding suggests

that (1) individuals with higher sensitivity to predicted threats are
more vulnerable to perceptual bias, and (2) encoding of learning
signals in accumbens and vmPFC systems is influenced by sensi-
tivity to threats, and this link may underpin a stronger influence
of declarative and value-based systems (Wang et al., 2018; Sey-
mour, 2019) on sensory decisions among threat-sensitive
individuals.

Another related finding highlights the role of the dorsal stria-
tum in mediating the link between low sensory awareness and
higher perceptual bias toward predicted threats. Individuals with
greater capacity for sustained attention toward bodily sensations
were less biased by cued threats while evaluating the sensory ev-
idence. Individual reports of mindfulness and perceptual bias
were both linked with the extent to which the putamen increased
its responsiveness to heat stimuli with increase in cued threats. In
models of reinforcement learning, this region is implicated in
gauging prediction errors in learned associations that underpin
habitual actions (Doll et al., 2015; Gillan et al., 2015; Otto et al.,
2015; Wang et al., 2018). This region is hypothesized to be a
central player in the system that encodes offline computations of
aversive learning and decisions that are more habit-like and less
explicit or cognitive in their nature (Wang et al., 2018). In con-
ditions of high uncertainty, this alternative system is suggested to
take over as a default system when the need for updating the
model is unclear. Together with the presented findings, mindful-
ness and its link with signaling of prediction errors within the
putamen (dorsal striatum) may suggest that mindfulness in-
creases reliance on these alternative systems (Wang et al., 2018) in
shaping sensory decisions so that they are aligned more on sen-
sory inputs rather than on overt or conceptual threat predictions,
but this assumption needs further verification.

These findings carry clinical, societal, and scientific implica-
tions. First, if we assume that perceptions accurately map to phys-
ical events, the systems that transmit and represent external
events as internal percepts are prone to nonlinearities so that our
subjective experiences are not absolute one-to-one reconstruc-
tions of objective details of noxious stimuli. Such intransitive
disparities are especially observed for pain experiences where the
experienced intensity of pain perception changes with context.
Clinically and in pain psychophysics, many interesting depar-
tures from theories of bottom-up or labeled-line pain processing
have been noted (Wiech, 2016; Reddan and Wager, 2018; Apkar-
ian, 2019; Seymour, 2019). An even more significant conse-
quence of this disparity between object and participant are the
chronic pain conditions that afflict a large percentage of the hu-
man population (Davis and Seminowicz, 2017; Apkarian, 2019;
Tracey et al., 2019). These individuals suffer from pains that often
do not correspond to external causes or symptoms of tissue dam-
age or pathology (Davis et al., 2017). When taken together with
studies that measure changes in pain response with context, the
take-home implication is that pain is perceived differently in each
individual due to the threat level individuals detect from the en-
vironmental context or prior experiences. The bias toward con-
text in evaluating pain is also influenced by threat sensitivity and
lower bodily awareness. From this vantage point, the subjective
and incorrigible aspects of pain experience are less paradoxical
than have been previously surmised.

Overall, our findings demonstrate that pain perception is a
combination of predicted threat and sensory inputs in pain path-
ways. The bias exerted by schemas is reduced when prediction
errors increase, but the update is partial and even less prominent
in individuals who are innately fearful of pain and more promi-
nent in individuals with higher mindful awareness. The brain
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systems that mediate these effects are those involved in cognitive
processing and aversive learning.
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